ATTACKS AGAINST THE CPA-D SECURITY OF EXACT FHE SCHEMES

Damien Stehlé

NEWTPQC ---- JUNE 10, 2024

Talk based on Eprint 2024/127 Joint work with J. H. Cheon, H. Choe, A. Passelègue & E. Suvanto

FULLY HOMOMORPHIC ENCRYPTION

 \rightarrow ct

An FHE scheme consists of (KeyGen, Enc, Eval, Dec):

- KeyGen \rightarrow (sk, pk, evk)
- Enc (pk; *m*)
- Eval (evk; f; ct₁, ..., ct_k) \rightarrow ct
- Dec (sk; ct) $\rightarrow m$

 $\forall f, m_1, \dots, m_k:$

 $Dec \left(Eval \left(f; Enc(m_1), \dots, Enc(m_k) \right) \right) = f(m_1, \dots, m_k)$

MAIN FHE SCHEMES

	Plaintext space	Basic operations	Ctxt format
BFV/BGV (2012)	$\left(\mathbf{F}_{p^k}\right)^{N/k}$	Add & Mult in // F _{p^k-automorph. in // Slot rotate}	RLWE
DM/CGGI (2015)	{0,1}	Binary gates	LWE (and RLWE internally)
CKKS (2017)	$\mathbb{C}^{N/2}$	Add & Mult in // Conj in // Slot rotate	RLWE

MAIN FHE SCHEMES

	Plaintext space	Basic operations	Ctxt format		
BFV/BGV (2012)	$\left(\mathbf{F}_{p^k}\right)^{N/k}$	Add & Mult in // F _{p^k-automorph. in // Slot rotate}	RLWE	EVACT	
DM/CGGI (2015)	{0,1}	Binary gates	LWE (and RLWE internally)	LAACI	
CKKS (2017)	$\mathbb{C}^{N/2}$	Add & Mult in // Conj in // Slot rotate	RLWE	APPROXIMATE (there is an exact mode for CKKS, see you on Thursday)	

 $\forall f, m_1, \dots, m_k :$ Dec (Eval (f; Enc $(m_1), \dots,$ Enc $(m_k))) \approx f(m_1, \dots, m_k)$

FHE SECURITY

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D SECURITY

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

Adversary has pk and evk

It can make queries:

- Enc $(m) \rightarrow ct$
- ChallEnc $(m_0, m_1) \rightarrow \text{ct}$
- Eval (evk; f; ct₁, ..., ct_k) \rightarrow ct
- Dec (sk; ct) $\rightarrow m$

// challenger knows the ptxts corresponding to all ctxts
// challenge ctxts: m_b is encrypted
// for ct₁, ..., ct_k in the databasis
// for ct in the databasis
if the corresponding plaintext does not depend on b

Adversary guesses b

THE TOPIC OF THIS TALK

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

"an approximate homomorphic encryption scheme can satisfy IND-CPA security and still be completely insecure"

"when applied to standard (exact) encryption schemes, IND-CPA-D is perfectly equivalent to IND-CPA"

CKKS is singled out as "insecure"

THE TOPIC OF THIS TALK

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

"an approximate homomorphic encryption scheme can satisfy IND-CPA security and still be completely insecure"

What does it mean?

Exact data? Correct? Heuristically? Which error probability?

"when applied to standard (exact) encryption schemes, IND-CPA-D is perfectly equivalent to IND-CPA"

THE TOPIC OF THIS TALK

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

IND-CPA-D attacks on exact schemes

BGV / BFV DM / CGGI (Exact) CKKS

CKKS shouldn't be singled out

J. H. Cheon, S. Hong, D. Kim: Remark on the security of CKKS scheme in practice. Eprint 2020/1581

HOW RELEVANT IS IND-CPA-D SECURITY?

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

If the computation is **confidential**, why would the client make the output of a confidential computation **public**?

HOW RELEVANT IS IND-CPA-D SECURITY?

Weak variant of security with ciphertext validity oracle

If the output is weird, the client could ask to redo the computation

HOW RELEVANT IS IND-CPA-D SECURITY?

Weak variant of security with ciphertext validity oracle

If the output is weird, the client could ask to redo the computation

Threshold FHE

sk is shared across several clients they collaborate to decrypt and they all get to know the result

ROADMAP

- 1- Motivation
- 2- Attacks against CKKS
- 3- IND-CPA-D versus IND-CPA for exact schemes
- 4- An attack against BFV/BGV addition
- 5- Attacks against bootstrapping algorithms
- 6- Concluding remarks

REMINDERS ON CKKS

Plaintext space: vectors of $\mathbb{C}^{N/2}$ (up to some precision)

add in //
multiply in //

msb lsb $\approx \Delta \cdot m$ 0

A ciphertext is of the form $(a, b) \in R_q^2$ s.t. $a \cdot s + b \approx \Delta \cdot m$

s ∈ R_q is the secret key
m is the (encoded) plaintext
Δ is the scaling factor (precision)
R_q = Z_q[x] / x^N + 1

To decrypt: $(a,b) \mapsto (a \cdot s + b \mod q) / \Delta$

THE LI-MICCIANCIO ATTACK

To decrypt: $(a, b) \mapsto (a \cdot s + b \mod q) / \Delta$

Encrypt 0 and decrypt it:

=> We know (a, b) and $a \cdot s + b \mod q$ => This reveals s **Key recovery**

A COUNTERMEASURE

B. Li, D. Micciancio, M. Schultz, J. Sorrell: Securing approximate homomorphic encryption using differential privacy. CRYPTO'22

Noise flooding: $(a,b) \mapsto (a \cdot s + b \mod q) / \Delta + e$

1-Bound the contributions of all errors (due to encryption and evaluation), for all possible inputs

2- Add to the decrypted value a noise e that is $\geq 2^{\lambda/2}$ larger

3- Such a large noise is necessary (else there is a distinguishing attack)

Security

The output is simulatable from the knowledge of the expected ptxt

ROADMAP

- 1- Motivation
- 2- Attacks against CKKS
- 3- IND-CPA-D versus CPA-D for exact schemes
- 4- An attack against BFV/BGV addition
- 5- Attacks against bootstrapping algorithms
- 6- Concluding remarks

CPA / CPA-D

B. Li, D. Micciancio: On the security of homomorphic encryption on approximate numbers. EUROCRYPT'21

Assume the scheme is exact

The decryption queries do not help the adversary:

For any valid decryption query (i.e., the corresponding ptxt does not depend on the challenge b), the adversary already knows the underlying ptxt

CPA / CPA-D

B. Li, D. Micciancio: On the security of homomorphic encryption on approximate numbers. EUROCRYPT'21

Assume the scheme is exact

The decryption queries do not help the adversary:

For any valid decryption query (i.e., the corresponding ptxt does not depend on the challenge b), the adversary already knows the underlying ptxt

Caveat The above requires perfect correctness

Let p_{err} be the maximum over all $\overline{f, m_1, \dots, m_k}$ of the probability that $\operatorname{Dec}\left(\operatorname{Eval}\left(f; \operatorname{Enc}(m_1), \dots, \operatorname{Enc}(m_k)\right)\right) \neq f(m_1, \dots, m_k)$

The equivalency still holds if p_{err} is extremely small

(SEMI-)GENERIC ATTACK FOR INCORRECT SCHEMES

Let $p_{\rm err}$ be the maximum over all f, m_1, \dots, m_k of the probability that

Dec $\left(\text{Eval}\left(f; \text{Enc}(m_1), \dots, \text{Enc}(m_k)\right) \right) \neq f(m_1, \dots, m_k)$

Assume that the adversary knows $f, m_1, \dots, m_k, m'_1, \dots, m'_k$ s.t.

- f, m_1, \dots, m_k reaches p_{err}
- f, m'_1, \dots, m'_k has much lower decryption error
- $f(m_1, ..., m_k) = f(m'_1, ..., m'_k)$

Then:

- request encryptions of m_1, \dots, m_k (b = 0) or m'_1, \dots, m'_k (b = 1)
- request evaluation of f
- request decryption

If there is an error, it's more likely that m_1, \ldots, m_k were encrypted

Distinguishing attack

CORRECTNESS IN PRACTICE

In practice (most frequent case in libraries):

- Failure probability from 2^{-15} to 2^{-50}
- It is derived from heuristic error analysis

Why?

1) Leads to more efficient schemes

2) For the primary use-case of FHE, IND-CPA (passive) security suffices

Next: how to exploit decryption errors to mount IND-CPA-D attacks on exact schemes!

ROADMAP

- 1- Motivation
- 2- Attacks against CKKS
- 3- IND-CPA-D versus IND-CPA for exact schemes
- 4- An attack against BFV/BGV addition
- 5- Attacks against DM/CGGI bootstrapping algorithms
- 6- Concluding remarks

REMINDERS ON BFV

Plaintext space: elements of $R_p = \mathbb{Z}_p[x] / x^N + 1$

• add in //

A ciphertext is of the form $(a, b) \in R_q^2$ s.t. $a \cdot s + b = \left(\frac{q}{p}\right) \cdot m + e$

- $s \in R_q$ is the secret key
- *m* is the plaintext

• e is the error

•
$$R_q = \mathbb{Z}_q[x] / x^N +$$

To **decrypt**:
$$(a,b) \mapsto \left[(a \cdot s + b \mod q) / \left(\frac{q}{p} \right) \right]$$

AN ATTACK ON BFV

Theory

To get correctness, bound the contributions of all errors for all possible inputs

Practice (sometimes)

Use heuristic bounds

Noise(ct₁ + ct₂) $\approx \sqrt{\text{Noise(ct_1)}^2 + \text{Noise(ct_2)}^2}$

AN ATTACK ON BFV

Theory

To get correctness, bound the contributions of all errors for all possible inputs

Practice (sometimes)

Use heuristic bounds

Noise(ct₁ + ct₂) $\approx \sqrt{\text{Noise(ct_1)}^2 + \text{Noise(ct_2)}^2}$

Key recovery

For $i = 1 \dots k$: $x_{i+1} \leftarrow x_i + \overline{x_i}$

```
Estimate noise \approx 2^{k/2}
=> The computation is deemed legitimate
Real noise \approx 2^k
```

Start with ct = Enc(0)

AN ATTACK ON BFV

Adaptation of [GNSJ24] to BFV Concurrently obtained in [CSBB24]

Q. Guo, D. Nabokov, E. Suvanto, T. Johansson: Key recovery attacks on approximate homomorphic encryption with non-worst-case noise flooding countermeasures. USENIX'24

M. Checri, R. Sirdey, A. Boudguiga, J.-P. Bultel: On the practical CPAD security of "exact" and threshold FHE schemes and libraries. Eprint 2024/116

Key recovery

For $i = 1 \dots k$: $x_{i+1} \leftarrow x_i + x_i$

```
Estimate noise \approx 2^{k/2}
=> The computation is deemed legitimate
Real noise \approx 2^k
```

Start with ct = Enc(0)

DOES IT WORK ON OPENFHE?

OpenFHE:

- claims to get IND-CPA-D security for CKKS,
- has measures in place for correctness of exact schemes.

DOES IT WORK ON OPENFHE?

OpenFHE:

- claims to get IND-CPA-D security for CKKS,
- has measures in place for correctness of exact schemes.

We tested the attack on **OpenFHE**'s BFV,

With: $N = 2^{12}$, $p = 2^{16} + 1$, $q = 2^{60}$, $\sigma \approx 2^{7.41}$

Start with an encryption of 0, and iterate k = 44 times

Estimated error probability $\approx 2^{-2^{27.5}}$

But decryption gives the initial noise, and we recover s

Only additions => attack is instantaneous

D. Stehlé --- CPA-D insecurity of exact FHE schemes

WHY DOES IT WORK ON OPENFHE?

Practice (sometimes)

Heuristic bounds Noise(ct₁ + ct₂) $\approx \sqrt{\text{Noise(ct_1)}^2 + \text{Noise(ct_2)}^2}$ OpenFHE

Triangular inequality

 $Noise(ct_1 + ct_2) \le Noise(ct_1) + Noise(ct_2)$

But the attack **does** succeed!

WHY DOES IT WORK ON OPENFHE?

Practice (sometimes) Heuristic bounds Noise(ct₁ + ct₂) $\approx \sqrt{Noise(ct_1)^2 + Noise(ct_2)^2}$

OpenFHE

Triangular inequality Noise($ct_1 + ct_2$) \leq Noise(ct_1) + Noise(ct_2)

But the attack does succeed!

There is an error in the handling of addition error bounds.

For k additions, OpenFHE multiplies the error by k.

For $i = 1 \dots k$: $x_{i+1} \leftarrow x_i + x_i$

k additions, but error grows as 2^k

ROADMAP

- 1- Motivation
- 2- Attacks against CKKS
- 3- IND-CPA-D versus IND-CPA for exact schemes
- 4- An attack against BFV/BGV addition
- 5- Attacks against bootstrapping algorithms
- 6- Concluding remarks

REMINDERS ON DM/CGGI

Plaintext space: elements of {0,1}

• Binary gates

msb Isb **m**

A ciphertext is of the form $(a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$ s.t. $\langle a, s \rangle + b = \left(\frac{q}{s}\right) \cdot m + e$

- $s \in \mathbb{Z}_q^n$ is the secret key e is the error
- *m* is the plaintext bit

To decrypt: $(a, b) \mapsto \left| (\langle a, s \rangle + b \mod q) / \left(\frac{q}{8} \right) \right|$

DM/CGGI BOOTSTRAPPING

DM/CGGI BOOTSTRAPPING

LWE ctxt with key s Modulo q <u>Noise variance</u>: $\sigma_{br}^2 + \sigma_{ks}^2$

KeySwitch

ModSwitch

LWE ctxt with key s Modulo 2N <u>Noise variance</u>: $\sigma_{br}^2 + \sigma_{ks}^2 + \sigma_{ms}^2$

BlindRotate

LWE ctxt with key s' Modulo q<u>Noise variance</u>: σ_{br}^2

SampleExtract

RLWE_N ctxt with key s' Modulo q<u>Noise variance</u>: σ_{br}^2

DM/CGGI GATE BOOTSTRAPPING

Two LWE ctxts with key s Modulo q <u>Noise variance</u>: $\sigma_{br}^2 + \sigma_{ks}^2$

Add and

ModSwitch

LWE ctxt with key s Modulo 2N <u>Noise variance</u>: $4\sigma_{br}^2 + 4\sigma_{ks}^2 + \sigma_{ms}^2$

KeySwitch

BlindRotate

EXPLOITING DECRYPTION ERROR

Add and

ModSwitch

LWE ctxt with key s Modulo 2N <u>Noise variance</u>: $4\sigma_{br}^2 + 4\sigma_{ks}^2 + \sigma_{ms}^2$

• Gate bootstrapping fails if the noise spills over the ptxt

• After ModSwitch is where noise is largest

• If gate bootstrapping fails, then the ModSwitch error must be large BlindRotate

EXPLOITING MODSWITCH ERROR

ModSwitch: ct mod $q \mapsto$ ct' = $\left\lfloor \left(\frac{2N}{q}\right) \cdot$ ct $\right\rfloor$ mod 2N

 $\langle ct, sk \rangle = e \implies \langle ct', sk \rangle = \langle e_{rnd}, sk \rangle + e$, where e_{rnd} is known

A failure tells that $\langle e_{\rm rnd}, {\rm sk} \rangle + e \geq \frac{2N}{16}$, for a known $e_{\rm rnd}$

Attack completed with statistical analysis

D. Stehlé --- CPA-D insecurity of exact FHE schemes

IN PRACTICE

M. Dahl, D. Demmler, S. E. Kazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. P. Smart, S. Tap, M. Walter: Noah's ark: efficient threshold-FHE using noise flooding. WAHC'23

We considered Zama's TFHE-rs

- For the default parameters, decryption error probability is $\approx 2^{-40}$
- We simulated that 256 decryption errors suffices
- Mounting the attack would take $\approx 2^{16}$ CPU years

- There are parameter sets with much poorer correctness
- The attack extends the [DDK+23] threshold-FHE scheme

AN ATTACK ON CKKS BOOTSTRAPPING

CKKS BTS has 4 steps:

- 1. S2C
- 2. ModRaise
- 3. C2S
- 4. EvalMod

AN ATTACK ON CKKS BOOTSTRAPPING

CKKS BTS has 4 steps:

- 1. S2C
- 2. ModRaise
- 3. C2S
- 4. EvalMod

Polynomial approximation to the mod-1 function, over a given number 2K + 1 of periods.

- Higher K => more costly
- Smaller *K* => higher probability of error

AN ATTACK ON CKKS BOOTSTRAPPING

CKKS BTS has 4 steps:

- 1. S2C
- 2. ModRaise
- 3. C2S
- 4. EvalMod

Polynomial approximation to the mod-1 function, over a given number 2K + 1 of periods.

- Higher K => more costly
- Smaller K => higher probability of error

EvalMod input not in the approximation range => Nonsensical output

When that happens, we have an equation

 $\langle x, sk \rangle + e \ge bound$, where x is known.

(like the DM/CGGI attack)

Example: OpenFHE (claims INDCPA-D security for CKKS)

Probability of error ranges from 2^{-22} to 2^{-57}

ROADMAP

- 1- Motivation
- 2- Attacks against CKKS
- 3- IND-CPA-D versus IND-CPA for exact schemes
- 4- An attack against BFV/BGV
- 5- An attack against DM/CGGI
- 6- Concluding remarks

TAKE-AWAY

IND-CPA security:

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security:

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

IND-CPA-D attacks on exact schemes

BGV / BFV DM / CGGI (Exact) CKKS

All competitive FHE schemes can suffer from IND-CPA-D attacks

COUNTERMEASURES

For all schemes:

- tiny failure probability
- **no heuristic** noise analysis

For (approximate) CKKS:

- high-precision computation
- followed by noise flooding

efficiency

COUNTERMEASURES

For all schemes:

- tiny failure probability
- **no heuristic** noise analysis

For (approximate) CKKS:

- high-precision computation
- followed by noise flooding

And be very diligent with the implementation:

- IND-CPA: be cautious about KeyGen & Enc
- IND-CPA-D: be cautious about KeyGen, Enc, Eval & Dec

QUESTIONS?