ATTACKS AGAINST THE CPA-D SECURITY OF EXACT FHE SCHEMES

DAMIEN STEHLÉ

```
NEWTPQC --- JUNE 10, }202
```

Talk based on Eprint 2024/127
Joint work with J. H. Cheon, H. Choe, A. Passelègue \& E. Suvanto

FULLY HOMOMORPHIC ENCRYPTION

An FHE scheme consists of (KeyGen, Enc, Eval, Dec):

- KeyGen
\rightarrow (sk, pk, evk)
- Enc (pk; m)
\rightarrow ct
- Eval (evk; $\left.f ; \mathrm{ct}_{1}, \ldots, \mathrm{ct}_{k}\right) \rightarrow c t$
- Dec (sk; ct)
$\rightarrow \quad m$

$$
\forall f, m_{1}, \ldots, m_{k}:
$$

$\operatorname{Dec}\left(\operatorname{Eval}\left(f ; \operatorname{Enc}\left(m_{1}\right), \ldots, \operatorname{Enc}\left(m_{k}\right)\right)\right)=f\left(m_{1}, \ldots, m_{k}\right)$

MAIN FHE SCHEMES

	Plaintext space	Basic operations	Ctxt format
BFV/BGV (2012)	$\left(\mathrm{F}_{p^{k}}\right)^{N / k}$	Add \& Mult in // $\mathrm{F}_{p^{k} \text {-atomorph. in // }}^{\text {Slot rotate }}$	RLWE
DM/CGGI (2015)	$\{0,1\}$	Binary gates	(and RLWE internally)
CKKS (2017)	$\mathbb{C}^{N / 2}$	Add \& Mult in // Conj in // Slot rotate	RLWE

MAIN FHE SCHEMES

	Plaintext space	Basic operations	Ctxt format
$\begin{aligned} & \text { BFV/BGV } \\ & (2012) \end{aligned}$	$\left(\mathrm{F}_{p^{k}}\right)^{N / k}$	Add \& Mult in // $\mathrm{F}_{p^{k}}$-automorph. in // Slot rotate	RLWE
$\begin{gathered} \text { DM/CGGI } \\ (2015) \end{gathered}$	\{0,1\}	Binary gates	LWE (and RLWE internally)
$\begin{gathered} \text { CKKS } \\ (2017) \end{gathered}$	$\mathbb{C}^{N / 2}$	Add \& Mult in // Conj in // Slot rotate	RLWE

EXACT

$$
\forall f, m_{1}, \ldots, m_{k}: \quad \operatorname{Dec}\left(\operatorname{Eval}\left(f ; \operatorname{Enc}\left(m_{1}\right), \ldots, \operatorname{Enc}\left(m_{k}\right)\right)\right) \approx f\left(m_{1}, \ldots, m_{k}\right)
$$

FHE SECURITY

IND-CPA-D SECURITY

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

Adversary has pk and evk
It can make queries:

- Enc $(m) \rightarrow$ ct
- ChallEnc $\left(m_{0}, m_{1}\right) \rightarrow c t$
- Eval (evk; $\left.f ; \mathrm{ct}_{1}, \ldots, \mathrm{ct}_{k}\right) \rightarrow c t$
- Dec (sk; ct) $\rightarrow m$
// challenger knows the ptxts corresponding to all ctxts
// challenge ctxts: m_{b} is encrypted
// for $\mathrm{ct}_{1}, \ldots, \mathrm{ct}_{k}$ in the databasis
// for ct in the databasis
if the corresponding plaintext does not depend on b
Adversary guesses b

THE TOPIC OF THIS TALK

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

$$
\begin{aligned}
& \text { "when applied to standard } \\
& \text { (exact) encryption schemes, } \\
& \text { IND-CPA-D is perfectly } \\
& \text { equivalent to IND-CPA" }
\end{aligned}
$$

CKKS is singled out as "insecure"

THE TOPIC OF THIS TALK

IND-CPA security

one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext
"an approximate homomorphic
encryption scheme can satisfy IND-CPA security and still be completely insecure"

Whatldoes
it mean?

THE TOPIC OF THIS TALK

IND-CPA security

IND-CPA-D security

one cannot distinguish between encryptions of two different plaintexts

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

IND-CPA-D attacks on exact schemes
BGV / BFV
DM / CGGI
(Exact) CKKS

CKKS shouldn'ł be singled ouł

HOW RELEVANT IS IND-CPA-D SECURITY?

IND-CPA-D security

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

If the computation is confidential, why would the client make the output of a confidential computation public?

HOW RELEVANT IS IND-CPA-D SECURITY?

HOW RELEVANT IS IND-CPA-D SECURITY?

Threshold FHE

with ciphertext validity oracle
If the output is weird,
the client could ask to redo the computation
sk is shared across several clients they collaborate to decrypt and they all get to know the result

ROADMAP

1- Motivation
2- Attacks against CKKS
3- IND-CPA-D versus IND-CPA for exact schemes
4- An attack against BFV/BGV addition
5- Attacks against bootstrapping algorithms
6- Concluding remarks

REMINDERS ON CKKS

Plaintext space: vectors of $\mathbb{C}^{N / 2}$ (up to some precision) msb

- multiply in //

A ciphertext is of the form $(a, b) \in R_{q}^{2} \quad$ s.t. $\quad a \cdot s+b \approx \Delta \cdot m$

- $s \in R_{q}$ is the secret key
- m is the (encoded) plaintext
- Δ is the scaling factor (precision)
- $R_{q}=\mathbb{Z}_{q}[x] / x^{N}+1$

To decrypt: $\quad(a, b) \mapsto(a \cdot s+b \bmod q) / \Delta$

THE LI-MICCIANCIO ATTACK

$$
\text { To decrypt: } \quad(a, b) \mapsto(a \cdot s+b \bmod q) / \Delta
$$

Encrypt 0 and decrypt it:
$=>$ We know (a, b) and $a \cdot s+b \bmod q$
=> This reveals s

A COUNTERMEASURE

B. Li, D. Micciancio, M. Schultz, J. Sorrell: Securing approximate homomorphic encryption using differential privacy. CRYPTO'22

$$
\text { Noise flooding: } \quad(a, b) \mapsto(a \cdot s+b \bmod q) / \Delta+e
$$

1- Bound the contributions of all errors (due to encryption and evaluation), for all possible inputs

2- Add to the decrypted value a noise e that is $\geq 2^{\lambda / 2}$ larger

3- Such a large noise is necessary (else there is a distinguishing attack)

ROADMAP

1- Motivation
2- Attacks against CKKS
3- IND-CPA-D versus CPA-D for exact schemes
4- An attack against BFV/BGV addition
5- Attacks against bootstrapping algorithms
6- Concluding remarks

CPA / CPA-D

B. Li, D. Micciancio: On the security of homomorphic encryption on approximate numbers. EUROCRYPT'21

Assume the scheme is exact

The decryption queries do not help the adversary:
For any valid decryption query (i.e., the corresponding ptxt does not depend on the challenge b), the adversary already knows the underlying ptxt

CPA / CPA-D

B. Li, D. Micciancio: On the security of homomorphic encryption on

Assume the scheme is exact
The decryption queries do not help the adversary:
For any valid decryption query (i.e., the corresponding ptxt does not depend on the challenge b), the adversary already knows the underlying ptxt

Caveat
 The above requires perfect correctness

Let $p_{\text {err }}$ be the maximum over all f, m_{1}, \ldots, m_{k} of the probability that

$$
\operatorname{Dec}\left(\operatorname{Eval}\left(f ; \operatorname{Enc}\left(m_{1}\right), \ldots, \operatorname{Enc}\left(m_{k}\right)\right)\right) \neq f\left(m_{1}, \ldots, m_{k}\right)
$$

(SEMI-)GENERIC ATTACK FOR INCORRECT SCHEMES

Let $p_{\text {err }}$ be the maximum over all f, m_{1}, \ldots, m_{k} of the probability that

$$
\operatorname{Dec}\left(\operatorname{Eval}\left(f ; \operatorname{Enc}\left(m_{1}\right), \ldots, \operatorname{Enc}\left(m_{k}\right)\right)\right) \neq f\left(m_{1}, \ldots, m_{k}\right)
$$

Assume that the adversary knows $f, m_{1}, \ldots, m_{k}, m_{1}^{\prime}, \ldots, m_{k}^{\prime}$ s.t.

- f, m_{1}, \ldots, m_{k} reaches $p_{\text {err }}$
- $f, m^{\prime}, \ldots, m^{\prime}{ }_{k}$ has much lower decryption error
- $f\left(m_{1}, \ldots, m_{k}\right)=f\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)$

Then:

- request encryptions of $m_{1}, \ldots, m_{k}(b=0)$ or $m^{\prime}{ }_{1}, \ldots, m^{\prime}{ }_{k}(b=1)$
- request evaluation of f
- request decryption

If there is an error, it's more likely that m_{1}, \ldots, m_{k} were encrypted

CORRECTNESS IN PRACTICE

In practice (most frequent case in libraries):

- Failure probability from 2^{-15} to 2^{-50}
- It is derived from heuristic error analysis

Why?

1) Leads to more efficient schemes
2) For the primary use-case of FHE, IND-CPA (passive) security suffices

Next: how to exploit decryption errors to mount IND-CPA-D aftacks on exacł schemes!

ROADMAP

1- Motivation
2- Attacks against CKKS
3- IND-CPA-D versus IND-CPA for exact schemes
4- An attack against BFV/BGV addition
5- Attacks against DM/CGGI bootstrapping algorithms
6- Concluding remarks

REMINDERS ON BFV

Plaintext space: elements of $R_{p}=\mathbb{Z}_{p}[x] / x^{N}+1$

- add in //

A ciphertext is of the form $(a, b) \in R_{q}^{2}$
s.t. $\quad a \cdot s+b=\left(\frac{q}{p}\right) \cdot m+e$

- $s \in R_{q}$ is the secret key
- e is the error
- m is the plaintext

$$
\text { - } R_{q}=\mathbb{Z}_{q}[x] / x^{N}+1
$$

To decrypt: $\quad(a, b) \mapsto\left|(a \cdot s+b \bmod q) /\left(\frac{q}{p}\right)\right|$

AN ATTACK ON BFV

Theory

To get correctness,
bound the contributions of all errors for all possible inputs

Practice (sometimes)

Use heuristic bounds

AN ATTACK ON BFV

Theory

To get correctness, bound the contributions of all errors for all possible inputs

Practice (sometimes)

Use heuristic bounds
$\operatorname{Noise}\left(\mathrm{ct}_{1}+\mathrm{ct}_{2}\right) \approx \sqrt{\text { Noise }\left(\mathrm{ct}_{1}\right)^{2}+\operatorname{Noise}\left(\mathrm{ct}_{2}\right)^{2}}$

For $i=1 \ldots k: \quad x_{i+1} \leftarrow x_{i}+x_{i}$
Estimate noise $\approx 2^{k / 2}$
=> The computation is deemed legitimate Real noise $\approx 2^{k}$

Start with ct $=\operatorname{Enc}(0)$

Key recovery

AN ATTACK ON BFV

Q. Guo, D. Nabokov, E. Suvanto, T. Johansson: Key recovery attacks on approximate homomorphic encryption with non-worst-case noise flooding countermeasures. USENIX'24
M. Checri, R. Sirdey, A. Boudguiga, J.-P. Bultel: On the practical CPAD security of "exact" and threshold FHE schemes and libraries. Eprint 2024/116

Adaptation of [GNSJ24] to BFV

Concurrently obtained in [CSBB24]

For $i=1 \ldots k: \quad x_{i+1} \leftarrow x_{i}+x_{i}$
Estimate noise $\approx 2^{k / 2}$
=> The computation is deemed legitimate Real noise $\approx 2^{k}$

Start with ct $=\operatorname{Enc}(0)$

	msb			lsb
ct ${ }_{0}$	$m=0$			e
ct_{i}	0	0	$2^{i} \cdot e$	0
ct_{k}	$2^{k} \cdot e$		0	

Key recovery

DOES IT WORK ON OPENFHE?

OpenFHE:

- claims to get IND-CPA-D security for CKKS,
- has measures in place for correctness of exact schemes.

DOES IT WORK ON OPENFHE?

OpenFHE:

- claims to get IND-CPA-D security for CKKS,
- has measures in place for correctness of exact schemes.

We tested the attack on OpenFHE's BFV,
With: $\quad N=2^{12}, \quad p=2^{16}+1, \quad q=2^{60}, \quad \sigma \approx 2^{7.41}$
Start with an encryption of 0, and iterate $k=44$ times

Estimated error probability $\approx 2^{-2^{27.5}}$

But decryption gives the initial noise, and we recover s

Only additions => attack is instantaneous

WHY DOES IT WORK ON OPENFHE?

Practice (sometimes)

Heuristic bounds
$\operatorname{Noise}\left(\mathrm{ct}_{1}+\mathrm{ct}_{2}\right) \approx \sqrt{\text { Noise }\left(\mathrm{ct}_{1}\right)^{2}+\operatorname{Noise}\left(\mathrm{ct}_{2}\right)^{2}}$

OpenFHE

Triangular inequality
$\operatorname{Noise}\left(\mathrm{ct}_{1}+\mathrm{ct}_{2}\right) \leq \operatorname{Noise}\left(\mathrm{ct}_{1}\right)+\operatorname{Noise}\left(\mathrm{ct}_{2}\right)$

But the attack does succeed!

WHY DOES IT WORK ON OPENFHE?

Practice (sometimes)

Heuristic bounds
$\operatorname{Noise}\left(\mathrm{ct}_{1}+\mathrm{ct}_{2}\right) \approx \sqrt{\text { Noise }\left(\mathrm{ct}_{1}\right)^{2}+\operatorname{Noise}\left(\mathrm{ct}_{2}\right)^{2}}$

OpenFHE

Triangular inequality
$\operatorname{Noise}\left(\mathrm{ct}_{1}+\mathrm{ct}_{2}\right) \leq \operatorname{Noise}\left(\mathrm{ct}_{1}\right)+\operatorname{Noise}\left(\mathrm{ct}_{2}\right)$

But the attack does succeed!
There is an error in the handling of addition error bounds.
For k additions, OpenFHE multiplies the error by k.
For $i=1 \ldots k: \quad x_{i+1} \leftarrow x_{i}+x_{i} \quad k$ additions, but error grows as 2^{k}

ROADMAP

1- Motivation
2- Attacks against CKKS
3- IND-CPA-D versus IND-CPA for exact schemes
4- An attack against BFV/BGV addition
5- Attacks against bootstrapping algorithms
6- Concluding remarks

REMINDERS ON DM/CGGI

Plaintext space: elements of $\{0,1\}$
msb
Isb

- Binary gates

A ciphertext is of the form $(a, b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \quad$ s.t. $\quad\langle a, s\rangle+b=\left(\frac{q}{8}\right) \cdot m+e$

- $s \in \mathbb{Z}_{q}^{n}$ is the secret key
- e is the error
- m is the plaintext bit

To decrypt: $\quad(a, b) \mapsto\left[\left.(\langle a, s\rangle+b \bmod q) /\left(\frac{q}{8}\right) \right\rvert\,\right.$

DM/CGGI BOOTSTRAPPING

LWE ctxt with key s Modulo q

ModSwitch
LWE ctxt with key s Modulo 2 N

DM/CGGI BOOTSTRAPPING

DM/CGGI GATE BOOTSTRAPPING

Two LWE ctxts with key s Modulo q
Noise variance: $\sigma_{b r}^{2}+\sigma_{k s}^{2}$

KeySwitch

EXPLOITING DECRYPTION ERROR

- Gate bootstrapping fails
if the noise spills over the ptxt

LWE ctxt with key s
Modulo $2 N$
Noise variance: $4 \sigma_{b r}^{2}+4 \sigma_{k s}^{2}+\sigma_{m s}^{2}$

- After ModSwitch is where noise is largest
- If gate bootstrapping fails,
then the ModSwitch error must be large

EXPLOITING MODSWITCH ERROR

$$
\begin{gathered}
\text { ModSwitch: ct } \bmod q \mapsto c t^{\prime}=\left[\left(\frac{2 N}{q}\right) \cdot \mathrm{ct}\right] \bmod 2 N \\
\langle\mathrm{ct}, \mathrm{sk}\rangle=e \Rightarrow\left\langle\mathrm{ct}^{\prime}, \mathrm{sk}\right\rangle=\left\langle e_{\mathrm{rnd}}, \mathrm{sk}\right\rangle+e \text {, where } e_{\mathrm{rnd}} \text { is known }
\end{gathered}
$$

A failure tells that $\left\langle e_{\text {rnd }}, \mathrm{sk}\right\rangle+e \geq \frac{2 N}{16}$, for a known $e_{\text {rnd }}$

Attack completed with statistical analysis

IN PRACTICE

We considered Zama's TFHE-rs

- For the default parameters, decryption error probability is $\approx 2^{-40}$
- We simulated that 256 decryption errors suffices
- Mounting the attack would take $\approx 2^{16} \mathrm{CPU}$ years
- There are parameter sets with much poorer correctness
- The attack extends the [DDK+23] threshold-FHE scheme

AN ATTACK ON CKKS BOOTSTRAPPING

CKKS BTS has 4 steps:

1. S2C
2. ModRaise
3. C2S
4. EvalMod

AN ATTACK ON CKKS BOOTSTRAPPING

CKKS BTS has 4 steps:

1. S2C
2. ModRaise
3. C2S
4. EvalMod

Polynomial approximation to the mod-1 function, over a given number $2 K+1$ of periods.

- Higher K => more costly
- Smaller $K=>$ higher probability of error

AN ATTACK ON CKKS BOOTSTRAPPING

CKKS BTS has 4 steps:

1. S2C
2. ModRaise
3. C2S
4. EvalMod
\rightarrow Polynomial approximation to the mod-1 function, over a given number $2 K+1$ of periods.

- Higher K => more costly
- Smaller K => higher probability of error
EvalMod input not in the approximation range => Nonsensical output

When that happens, we have an equation
$\langle x, \mathrm{sk}\rangle+\mathrm{e} \geq$ bound, where x is known.
(like the DM/CGGI attack)

ROADMAP

1- Motivation
2- Attacks against CKKS
3- IND-CPA-D versus IND-CPA for exact schemes
4- An attack against BFV/BGV
5- An attack against DM/CGGI
6- Concluding remarks

TAKE-AWAY

IND-CPA security:
one cannot distinguish between encryptions of two different plaintexts

IND-CPA-D security:

Same, but the attacker may ask for decryption of ciphertexts for which it is supposed to know the underlying plaintext

IND-CPA-D attacks on exact schemes
BGV / BFV
DM / CGGI
(Exact) CKKS

All competiiive FHE schemes can suffer from IND-CPA-D attacks

COUNTERMEASURES

For all schemes:

- tiny failure probability
- no heuristic noise analysis

For (approximate) CKKS:

- high-precision computation
- followed by noise flooding

COUNTERMEASURES

For all schemes:

- tiny failure probability
- no heuristic noise analysis

For (approximate) CKKS:

- high-precision computation
- followed by noise flooding

And be very diligent with the implementation:

- IND-CPA: be cautious about KeyGen \& Enc
- IND-CPA-D: be cautious about KeyGen, Enc, Eval \& Dec

QUESTIONS?

