# **ADVENTURES IN SIS WITH HINTS**

EMBRACING THE BRAVE NEW WORLD WHERE WE MAKE IT UP AS WE GO

Martin R. Albrecht

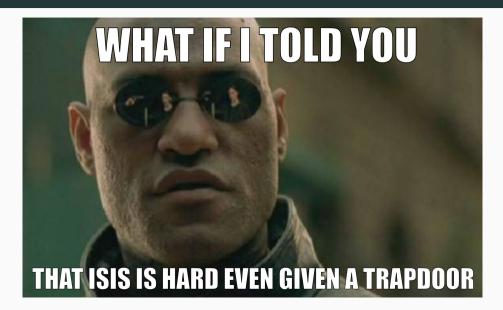
10 June 2024

#### PROGRAMME

- The SIS with Hints Zoo is an attempt to keep track of all those new SIS-like assumptions that hand out additional hints.
- I will discuss several of these assumptions here, with a focus on computational hardness rather than design.
  - **Designers** Please consider whether you can re-use one of those many newfangled assumptions before introducing yet another one.

**Cryptanalysts** Analyse them!

• I will also dive a bit deeper into some recent adventures in SIS with hints.



#### Definition (M-(I)SIS)

- An instance of M-SIS is given by  $\mathbf{A} \leftarrow \mathfrak{R}_q^{n \times m}$  and has solutions  $\mathbf{u}^* \in \mathcal{R}^m$  such that  $\|\mathbf{u}^*\| \leq \beta^*$  and  $\mathbf{A} \cdot \mathbf{u}^* \equiv \mathbf{0} \mod q$ .
- An instance of M-ISIS is given by  $(\mathbf{A},\mathbf{t}) \leftarrow \mathcal{R}_q^{n\times m} \times \mathcal{R}_q^n$  and has solutions  $\mathbf{u}^*$  such that  $\|\mathbf{u}^*\| \leq \beta$  and  $\mathbf{A} \cdot \mathbf{u}^* \equiv \mathbf{t} \bmod q$ .
- Throughout, feel free to set  $\mathcal{R} \coloneqq \mathbb{Z}$ .
- $\boldsymbol{\cdot}$  I am not going to discuss issues arising over cyclotomic rings in any detail.

#### NOTATION II

• The kernel lattice  $\Lambda_q^{\perp}(A)$  of A consists of all integral vectors  $\mathcal{R}_q$ -orthogonal to rows of A:

$$\Lambda_q^{\perp}(A) := \{ \mathbf{x} \in \mathcal{R}^m : A \cdot \mathbf{x} \equiv \mathbf{0} \bmod q \}.$$

- ·  $\Lambda_q^{\perp}(\mathbf{A})$  has rank m because  $q\mathcal{R}^m \subseteq \Lambda_q^{\perp}(\mathbf{A}) \subseteq \mathcal{R}^m$ .
- I write **G** for "the Gadget matrix"

# K-SIS

#### THE ORIGINAL: K-SIS

#### Definition

For any integer  $k \geq 0$ , an instance of the k-M-SIS problem<sup>1</sup> is a matrix  $\mathbf{A} \in \mathcal{R}_q^{n \times m}$  and a set of k vectors  $\mathbf{u}_1, \dots \mathbf{u}_k$  s.t.  $\mathbf{A} \cdot \mathbf{u}_i \equiv \mathbf{0} \mod q$  with  $\|\mathbf{u}_i\| \leq \beta$ . A solution to the problem is a nonzero vector  $\mathbf{u}^* \in \mathcal{R}^m$  such that

$$\|\mathbf{u}^{\star}\| \leq \beta^{*}, \quad \mathbf{A} \cdot \mathbf{u}^{\star} \equiv \mathbf{0} \mod q, \quad \text{and} \quad \mathbf{u}^{\star} \notin \mathcal{K}\text{-span}(\{\mathbf{u}_{i}\}_{1 \leq i \leq k}).$$

Dan Boneh and David Mandell Freeman. Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based Signatures. In: *PKC 2011.* Ed. by Dario Catalano, Nelly Fazio, Rosario Gennaro and Antonio Nicolosi. Vol. 6571. LNCS. Springer, Heidelberg, Mar. 2011, pp. 1–16. DOI: 10.1007/978-3-642-19379-8\_1

<sup>&</sup>lt;sup>1</sup>This is the module variant defined in [ACLMT22].

#### K-SIS HARDNESS

- [BF11] showed that k-SIS (over  $\mathbb{Z}$ ) is hard if SIS is hard for uniform **A**, for discrete Gaussian  $\mathbf{u}_i$  and for k = O(1).
- This reduction was improved in [LPSS14] to cover  $k = \mathcal{O}(m)$ .
- No proof was provided for the module variant in [ACLMT22] but Sasha Laphia later proved it (unpublished).

#### **PROOF IDEA**

Let  $\mathcal{R}_q \coloneqq \mathbb{Z}_q$  be a field. Given the challenge  $\mathbf{B} \in \mathcal{R}_q^{n \times (m-k)}$ 

1. Sample a small Gaussian full rank matrix  $\mathbf{E} \in \mathbb{Z}^{m \times k}$  and write

$$E = \begin{pmatrix} F \\ H \end{pmatrix}$$
 with  $H \in \mathcal{R}^{k \times k}$  and invertible over  $\mathcal{K}$ .

- 2. Set  $U := -B \cdot F \cdot H^{-1}$  and A := [B|U].
  - We have  $\mathbf{A} \cdot \mathbf{E} = \mathbf{0}$  since  $\mathbf{B} \cdot \mathbf{F} \mathbf{B} \cdot \mathbf{F} \cdot \mathbf{H}^{-1} \cdot \mathbf{H} \equiv \mathbf{0}$ .
  - We also have that A is close to uniform since B · F is close to uniform and H is invertible.
- 3. When the adversary outputs  $\mathbf{u}^* = (\mathbf{f}, \mathbf{g})$ , we have
  - $\cdot \ 0 \equiv B \cdot f B \cdot F \cdot H^{-1} \cdot g$
  - $0 = \det(H) \cdot B \cdot f \det(H) \cdot B \cdot F \cdot H^{-1} \cdot g$  over  $\mathbb{Z}$ .
  - $\cdot \ 0 = B \cdot \big( \text{det}(H) \cdot f \text{det}(H) \cdot F \cdot H^{-1} \cdot g \big)$

# FROM O(1) TO O(m)

- det(H) grows quickly with k
- [LPSS14] essentially samples small **H** with small inverse, but non-trivial to make the result look Gaussian.

#### WHAT CAN IT DO?

- linearly homomorphic signatures
- $\cdot$  removing the random oracle from GPV signatures at the price of restricting to k signatures
- traitor-tracing (by extension to k-LWE<sup>2</sup>)

• ...

<sup>&</sup>lt;sup>2</sup>It is exactly what you think it is

#### PERSPECTIVE

#### Leakage Resilience

Alice has A, T s.t.  $T \in \mathcal{R}^{m \times m}$  is short and  $A \cdot T \equiv 0 \mod q$ , i.e. T is trapdoor. Even given, say, 1/2 of T it is hard to recover a full trapdoor.

THE CRISIS OF KNOWLEDGE

**ASSUMPTIONS** 

#### K-R-ISIS

#### Definition (K-M-ISIS Admissible)

Let  $g(\mathbf{X}) = \mathbf{X}^{\mathbf{e}} := \prod_{i \in \mathbb{Z}_w} X_i^{e_i}$  for some exponent vector  $\mathbf{e} \in \mathbb{Z}^w$ . Let  $\mathcal{G} \subset \mathcal{R}(\mathbf{X})$  be a set of such monomials with  $k := |\mathcal{G}|$ . We call a family  $\mathcal{G}$  **k-M-ISIS-admissible** if (1) all  $g \in \mathcal{G}$  have constant degree, (2) all  $g \in \mathcal{G}$  are distinct and  $0 \notin \mathcal{G}$ .

#### Definition (K-M-ISIS Assumption)

Let  $\mathbf{t} = (1, 0, \dots, 0)$ . Let  $\mathcal{G}$  be k-M-ISIS-admissible. Let  $\mathbf{A} \leftarrow_{\$} \mathcal{R}_q^{n \times m}$ ,  $\mathbf{v} \leftarrow_{\$} (\mathcal{R}_q^{\star})^w$ . Given  $(\mathbf{A}, \mathbf{v}, \mathbf{t}, \{\mathbf{u}_g\})$  with  $\mathbf{u}_g$  short and  $g(\mathbf{v}) \cdot \mathbf{t} \equiv \mathbf{A} \cdot \mathbf{u}_g \mod q$  it is hard to find a short  $\mathbf{u}^{\star}$  and small  $\mathbf{s}^{\star}$  s.t.  $\mathbf{s}^{\star} \cdot \mathbf{t} \equiv \mathbf{A} \cdot \mathbf{u}^{\star} \mod q$ .

When n = 1, we call the problem K-R-ISIS.

Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract). In: CRYPTO 2022, Part II. ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 102–132. DOI: 10.1007/978-3-031-15979-4\_4

#### K-R-ISIS HARDNESS

#### Some reductions (none cover the interesting cases):

- K-R-ISIS is as hard as R-SIS when m > k or when the system generated by  $\mathcal{G}$  is efficiently invertible.
- k-M-ISIS is at least as hard as K-R-ISIS and that K-M-ISIS is a true generalisation of K-R-SIS.
- Scaling  $(\mathcal{G}, g^*)$  multiplicatively by any non-zero g does not change the hardness, e.g. we may choose to normalise instances to  $g^* \equiv 1$ .
- $(\mathcal{G}, 1)$  is as hard as  $(\mathcal{G}, 0)$  for any  $\mathcal{G}$ : non-homogeneous variant is no easier than the homogeneous variant.

#### Direct cryptanalysis:

- a direct SIS attack on A.
- finding short  $\mathbb{Z}$ -linear combinations of  $\mathbf{u}_i$
- finding Q-linear combinations of u<sub>i</sub> that produce short images.

... all seem hard.

### **KNOWLEDGE K-R-ISIS**

The assumption states that for any element  $c \cdot t$  that the adversary can produce together with a short preimage, it produced that as some small linear combination of the preimages  $\{u_g\}$  we have given it. Thus, roughly:

#### Definition (Knowledge K-R-ISIS)

If an adversary outputs any c,  $\mathbf{u}_c$  s.t.

$$c \cdot \mathbf{t} \equiv \mathbf{A} \cdot \mathbf{u}_c \mod q$$

There is an extractor that – given the adversary's randomness – outputs short  $\{c_a\}$  s.t.

$$c \equiv \sum_{g \in \mathcal{G}} c_g \cdot g(\mathbf{v}) \bmod q.$$

Think  $\mathbf{t} = (1,0)$  and the second component serves as a "check equation": The assumption only makes sense for n > 1.

#### **KNOWLEDGE K-R-ISIS: THE AUDACITY**

The knowledge k-M-ISIS assumption, as stated, only makes sense for  $\eta \geq 2$ , i.e. not for k-R-ISIS. To see this, consider an adversary  $\mathcal A$  which does the following: First, it samples random short  $\mathbf u$  and checks whether  $\mathbf A \cdot \mathbf u$  mod q is in the submodule of  $\mathcal R_q^\eta$  generated by  $\mathbf t$ . If not,  $\mathcal A$  aborts. If so, it finds c such that  $\mathbf A \cdot \mathbf u = c \cdot \mathbf t$  mod q and outputs  $(c, \mathbf u)$ . When  $\eta = 1$  and assuming without loss of generality that  $\mathcal T = \{(1,0,\dots,0)^{\mathsf T}\}$ , we observe that t=1 generates  $\mathcal R_q$ , which means  $\mathcal A$  never aborts. Clearly, when  $\mathcal A$  does not abort, it has no "knowledge" of how c can be expressed as a linear combination of  $\{g(\mathbf v)\}_{g \in \mathcal G}$ . Note that when  $\eta \geq 2$  the adversary  $\mathcal A$  aborts with overwhelming probability since  $\mathbf A \cdot \mathbf u$  mod q is close to uniform over  $\mathcal R_q^\eta$  but the submodule generated by  $\mathbf t$  is only a negligible faction of  $\mathcal R_q^\eta$ . However, in order to be able to pun about "crises of knowledge", we also define a ring version of the knowledge assumption. In the ring setting, we consider proper ideals rather than submodules.

#### **KNOWLEDGE K-R-ISIS: ALMOST INSTANT KARMA**

The Knowledge K-M-ISIS assumptions is "morally" false.

$$\begin{pmatrix} \mathsf{C} \\ \mathsf{0} \end{pmatrix} \equiv \begin{pmatrix} \mathsf{A}_0 \\ \mathsf{A}_1 \end{pmatrix} \cdot \mathsf{U} \bmod q.$$

- **U** is a trapdoor for  $A_1$
- Use it to find a short preimage of some  $(c^{\star},0)$  using, say, Babai rounding.
- It will change c\* but we're allowed to output anything in the first component.

Hoeteck Wee and David J. Wu. Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis. In: ASIACRYPT 2023, Part V. ed. by Jian Guo and Ron Steinfeld. Vol. 14442. LNCS. Springer, Heidelberg, Dec. 2023, pp. 201–235. DOI: 10.1007/978-981-99-8733-7\_7

<sup>&</sup>lt;sup>3</sup>The assumption is technically unfalsifiable but for all intents and purposes it is wrong by inspection of the attack.

#### KNOWN KNOWLEDGE ASSUMPTIONS ARE EASY QUANTUMLY

Our main result is a quantum polynomial-time algorithm that samples well-distributed LWE instances while provably not knowing the solution, under the assumption that LWE is hard. Moreover, the approach works for a vast range of LWE parametrizations, including those used in the above-mentioned SNARKs.

Thomas Debris-Alazard, Pouria Fallahpour and Damien Stehlé. Quantum Oblivious LWE Sampling and Insecurity of Standard Model Lattice-Based SNARKs. Cryptology ePrint Archive, Paper 2024/030. 2024. URL: https://eprint.iacr.org/2024/030

# BASIS

# BASIS (RANDOM)

We consider k = 2, for simplicity.

#### Definition (BASIS<sub>rand</sub>)

Let  $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ . We're given

$$B := \begin{pmatrix} A_0 & 0 & -G \\ 0 & A_1 & -G \end{pmatrix}$$

and a short T s.t.  $G \equiv B \cdot T \mod q$  where  $A_i$  are uniformly random for i > 0 and  $A_0 := [\mathbf{a}|\mathbf{A}^T]^T$  for uniformly random A and a.

Given (B, T) it is hard to find a short  $u^*$  s.t.  $A \cdot u^* \equiv 0 \mod q$ .

Hoeteck Wee and David J. Wu. Succinct Vector, Polynomial, and Functional Commitments from Lattices. In: EUROCRYPT 2023, Part III. ed. by Carmit Hazay and Martijn Stam. Vol. 14006. LNCS. Springer, Heidelberg, Apr. 2023, pp. 385–416. DOI: 10.1007/978-3-031-30620-4\_13

#### **HARDNESS**

#### BASIS<sub>rand</sub> is as hard as SIS.

- We can construct **B** given **A** since we can trapdoor all  $A_i$  for i > 0.
- For each column  $\mathbf{t} = (\mathbf{t}^{(0)}, \mathbf{t}^{(1)}, \mathbf{t}^{(G)})$  of T we have  $\mathbf{A}_i \cdot \mathbf{t}^{(i)} \equiv \mathbf{G} \cdot \mathbf{t}^{(G)}$  where  $\mathbf{G} \cdot \mathbf{t}^{(G)}$  is close to uniform.
- We can sample  $\mathbf{t}^{(0)}$ , compute  $\mathbf{y} := \mathbf{A}_0 \cdot \mathbf{t}^{(0)}$  and then use the gadget structure of  $\mathbf{G}$  to find a short  $\mathbf{t}^{(G)}$  s.t.  $\mathbf{A}_i \cdot \mathbf{t}^{(i)} \equiv \mathbf{G} \cdot \mathbf{t}^{(G)}$ .
- Using the trapdoors for  $A_i$  with i > 0 we can find  $\mathbf{t}^{(i)}$  s.t.  $A_i \cdot \mathbf{t}^{(i)} \equiv \mathbf{G} \cdot \mathbf{t}^{(G)}$ .

# BASIS (STRUCTURED)

We consider k = 2, for simplicity.

### Definition (BASIS<sub>struct</sub>)

Let  $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ . We're given

$$\mathsf{B} \coloneqq \begin{pmatrix} \mathsf{A}_0 & \mathsf{0} & -\mathsf{G} \\ \mathsf{0} & \mathsf{A}_1 & -\mathsf{G} \end{pmatrix}$$

and a short T s.t.  $G_{n'} \equiv B \cdot T \mod q$  where  $A_i := W_i \cdot A$  for known  $W_i \in \mathbb{Z}_q^{n \times n}$ .

Given (B,T) it is hard to find a short  $u^*$  s.t.  $A \cdot u^* \equiv 0 \mod q$ .

Hoeteck Wee and David J. Wu. Succinct Vector, Polynomial, and Functional Commitments from Lattices. In: EUROCRYPT 2023, Part III. ed. by Carmit Hazay and Martijn Stam. Vol. 14006. LNCS. Springer, Heidelberg, Apr. 2023, pp. 385–416. DOI: 10.1007/978-3-031-30620-4\_13



Given an algorithm for solving BASIS<sub>struct</sub> there is an algorithm for solving k-M-ISIS.

#### **PRISIS**

#### Definition (PRISIS)

Let  $\mathbf{A} \in \mathcal{R}_q^{n \times m}$ . We're given

$$B := \begin{pmatrix} A & 0 & \cdots & -G \\ 0 & w \cdot A & \cdots & -G \\ 0 & 0 & \ddots & -G \\ 0 & \cdots & w^{k-1} \cdot A & -G \end{pmatrix}$$

and a short T s.t.  $G \equiv B \cdot T \mod q$ .

Given (A, B, w, T) it is hard to find a short  $u^*$  s.t.  $A \cdot u^* \equiv 0$ .

Giacomo Fenzi, Hossein Moghaddas and Ngoc Khanh Nguyen. Lattice-Based Polynomial Commitments: Towards Asymptotic and Concrete Efficiency. Cryptology ePrint Archive, Paper 2023/846.

https://eprint.iacr.org/2023/846. 2023. URL: https://eprint.iacr.org/2023/846

#### **HARDNESS**

PRISIS's additional structure allows to prove a broader regime of parameters as hard as M-SIS

#### If k = 2 then PRISIS is no easier than M-SIS

$$\mathsf{B} \coloneqq \begin{pmatrix} \mathsf{A} & \mathsf{0} & \cdots & -\mathsf{G} \\ \mathsf{0} & w \cdot \mathsf{A} & \cdots & -\mathsf{G} \end{pmatrix}$$

#### The Trick

- Plant an NTRU instance in w, and use its trapdoor to construct the global trapdoor T
- · Can pick parameters for NTRU that are statistically secure

#### *h*-PRISIS

h-PRISIS [AFLN23] is a multi-instance version of PRISIS.

#### Definition (h-PRISIS)

Let  $\mathbf{A}_i \in \mathcal{R}_a^{n \times m}$  for  $i \in \{0, h-1\}$ . We're given

$$B_{i} := \begin{pmatrix} A_{i} & 0 & \cdots & -G \\ 0 & w_{i} \cdot A_{i} & \cdots & -G \\ 0 & 0 & \ddots & -G \\ 0 & \cdots & w_{i}^{\ell-1} \cdot A_{i} & -G \end{pmatrix}$$

and a short  $T_i$  s.t.  $G \equiv B_i \cdot T_i \mod q$ .

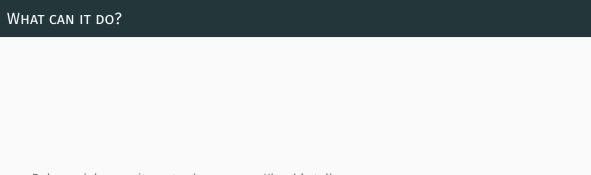
Given  $(\{A_i\}, \{B_i\}, \{w_i\}, \{T\}_i)$  it is hard to find a short  $u_i^*$  s.t.  $\sum A_i \cdot u_i^* \equiv 0 \mod q$ .

#### **HARDNESS**

h-PRISIS is no easier than PRISIS [AFLN23]. In particular, if  $\ell=2$  then h-PRISIS is no easier than M-SIS [AFLN23].

#### The Trick

- · Let U,V be short and satisfy  $U\cdot V\equiv I.$
- We can re-randomise  $A_0$  to  $A_i$  as  $A_i := A_0 \cdot U$  and T as  $T_i := V \cdot T$
- We have  $\mathbf{A}_i \cdot \mathbf{T}_i \equiv \mathbf{A}_0 \cdot \mathbf{U} \cdot \mathbf{V} \cdot \mathbf{T} \equiv \mathbf{A} \cdot \mathbf{T}$ .
- $\cdot \ \mathsf{U} \coloneqq \begin{pmatrix} \mathsf{I} & \mathsf{R}_1 \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \cdot \begin{pmatrix} \mathsf{I} & \mathsf{0} \\ \mathsf{R}_2 & \mathsf{I} \end{pmatrix} \text{ and } \mathsf{V} \coloneqq \begin{pmatrix} \mathsf{I} & \mathsf{0} \\ -\mathsf{R}_2 & \mathsf{I} \end{pmatrix} \cdot \begin{pmatrix} \mathsf{I} & -\mathsf{R}_1 \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \text{ where } \mathsf{R}_i \text{ are small.}$



 $Polynomial\ commitment\ schemes,\ see\ Khanh's\ talk.$ 



#### ONE-MORE-ISIS

#### Definition (One-more-ISIS)

Let  $\mathbf{A} \leftarrow \$ \mathbb{Z}_q^{n \times m}$ .

**Syndrome queries:** can request a random challenge vector  $\mathbf{t} \leftrightarrow \mathbb{Z}_q^n$  which is added to some set  $\mathcal{S}$ .

**Preimage queries:** can submit **any** vector  $\mathbf{t}' \in \mathbb{Z}_q^n$  will get a short vector  $\mathbf{u}' \leftarrow \$   $D_{\mathbb{Z}^m,\sigma}$  such that  $\mathbf{A} \cdot \mathbf{u}' \equiv \mathbf{t}' \mod q$ . Denote k for the number of preimage queries.

The adversary is asked to output k+1 pairs  $\{(\mathbf{u}_i^*, \mathbf{t}_i)\}_{1 \leq i \leq k+1}$  satisfying:

$$A \cdot u_i^* \equiv t_i \mod q, \|u_i^*\| \leq \beta^* \text{ and } t_i \in S.$$

Shweta Agrawal, Elena Kirshanova, Damien Stehlé and Anshu Yadav. Practical, Round-Optimal Lattice-Based Blind Signatures. In: ACM CCS 2022. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers and Elaine Shi. ACM Press, Nov. 2022, pp. 39–53. DOI: 10.1145/3548606.3560650

#### **HARDNESS**

The hardness of the problem is analysed using direct cryptanalysis in the original paper. The authors give a combinatorial attack and a lattice attack.

#### The Trick

The key ingredient is that  $\beta^*$  is only marginally bigger than  $\sqrt{m} \cdot \sigma$ .

#### HARDNESS: LATTICE ATTACK

• The adversary requests  $\geq \ell$  preimages of zero and uses that to produce a short basis **T** for the kernel of **A**, i.e.

$$A \cdot T \equiv 0 \mod q$$
.

- This constitutes a trapdoor for **A** and thus permits to return short preimages for any target.
- However, this trapdoor is of degraded quality relative to the trapdoor used by the challenger.

#### Challenge

The key computational challenge then is to fix-up or improve this degraded trapdoor in order to be able to sample sufficiently short vectors.

#### WHAT CAN IT DO?

Blind signatures.<sup>4</sup>

<sup>&</sup>lt;sup>4</sup>But see Ward Beullens, Vadim Lyubashevsky, Ngoc Khanh Nguyen and Gregor Seiler. Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal. Cryptology ePrint Archive, Report 2023/077. https://eprint.iacr.org/2023/077. 2023.

HINTED LATTICE PROBLEMS AS HARD

AS FINDING SHORT VECTORS IN

PSPACE ∩ E

# Hinted Lattice Problems as Hard as Finding Short Vectors in PSPACE $\boldsymbol{\cap}$ E

joint work with Russell W. F. Lai<sup>5</sup> and Eamonn W. Postlethwaite

<sup>&</sup>lt;sup>5</sup>some slides nicked from Russell.

## **GPV**

Public Key Matrix  $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ .

Secret Key Short basis of  $\Lambda_q^{\perp}(\mathbf{A})$  of norm  $\alpha$ .

Signature of  $\mu$  Short vector **u** satisfying

$$A \cdot u \equiv H(\mu) \mod q$$
 and  $\|u\| \le \beta$ 

where  $H:\{0,1\}^* \to \mathbb{Z}_q^n$  is hash function modelled as random oracle,  $\beta \approx \sqrt{m} \cdot \alpha$ .

# SECURITY PROOF $\approx$ ARGUMENT AGAINST SIGNING THE SAME $\mu$ TWICE:

 $\cdot$  Signing same  $\mu$  twice  $\Longrightarrow$ 

$$\begin{aligned} \mathbf{A} \cdot \mathbf{u}_0 &\equiv \mathbf{A} \cdot \mathbf{u}_1 = \mathbf{H}(\mu) \bmod q, \\ \mathbf{A} \cdot (\mathbf{u}_0 - \mathbf{u}_1) &= \mathbf{0} \bmod q, \end{aligned}$$

i.e. giving away short vector  $\mathbf{x}_0 - \mathbf{x}_1 \in \Lambda_a^{\perp}(\mathbf{A})$ .

• Do this for many  $\mu \implies$  adversary gets short(-ish) basis of  $\Lambda_q^{\perp}(\mathbf{A})$  of norm  $\approx \sqrt{m} \cdot \alpha$ .

# Does this (really) help adversary forge signatures?

One-more-ISIS assumption suggest "no"!

# The k-hint Inhomogeneous Short Integer Solution Problem:

#### Definition (k-H-ISIS)

Let  $k, n, m, q, \beta$ , HintGen, where

$$\forall \mathbf{A} \in \mathbb{Z}_a^{n \times m}$$
, HintGen(A)  $\subseteq_k \Lambda_a^{\perp}(\mathbf{A})$  and  $\beta \leq r \cdot \|\text{HintGen}(\mathbf{A})\|$ 

for some ratio  $r \leq \operatorname{polylog}(m)$ . (We mostly care about  $r \leq O(1)$  or at least  $r \leq O(\log m)$ .)

Given (A, y, U) where

$$A \leftarrow \mathbb{Z}_q^{n \times m}, \quad y \leftarrow \mathbb{Z}_q^n, \quad U \leftarrow \text{HintGen}(A).$$

find  $\mathbf{u}^* \in \mathbb{Z}^m$  such that

$$A \cdot u^* \equiv y \mod q$$
 and  $\|u^*\| \le \beta$ .

The k-hint (Homogeneous) Short Integer Solution (k-H-SIS) problem: Same thing but y = 0.

## SUCCESSIVE MINIMA AND SIVP

- Successive minima  $\lambda_i(\Lambda)$  = radius of smallest ball containing i linearly independent lattice vectors.
- SIVP $_{\gamma}$ : Given lattice  $\Lambda \subseteq \mathbb{R}^m$ , find m linearly independent lattice vectors of norm at most  $\gamma \cdot \lambda_m(\Lambda)$ .
- We will discuss asymptotic complexities in terms of m.

## **ENUMERATION AND SIEVING**

Two types of lattice algorithms for  $\gamma \leq \text{poly}(m)$ :

### Enumeration-type

- Enumerate over all non-zero vectors in  $\Lambda$  of norm at most  $\beta$ .
- Output the shortest vector.

## Sieving-type

- Start with a long list of vectors in  $\Lambda$ .
- Search for an integer combination of vectors in the list which gives a shorter vector.
- Add resulting vector to the list.
- · Repeat.

## LANDSCAPE

Space-time complexity of SIVP $_{\gamma}$  over  $\Lambda_q^{\perp}(\mathbf{A})$ :

| Algorithms                                    | Time                                            | Memory                              | Assumptions                                       |
|-----------------------------------------------|-------------------------------------------------|-------------------------------------|---------------------------------------------------|
| Enumeration<br>Sieving<br>Sieving (this work) | $m^{\Omega(m)}$ $2^{\Omega(m)}$ $2^{\Omega(m)}$ | $poly(m)$ $2^{\Omega(m)}$ $poly(m)$ | -<br>-<br>1) sub. exp. OWF and 2) k-H-SIS is easy |

## Our Interpretation

Hinted lattice problems seem hard.

## STEP 1: ENTROPIC REDUCTION FROM K-H-SIS TO K-H-ISIS

We show that the classic SIS to ISIS reduction gives the following:

#### $k-H-SIS \rightarrow k-H-ISIS$

Let  $\mathcal A$  be PPT adversary against k-H-ISIS, then there exists a PPT adversary  $\mathcal B$  against k-H-SIS. The output of  $\mathcal B$  follows a Gaussian distribution (with some centre) with high min-entropy.

 $\mathcal{B}'$ s outputs are drawn from the following distribution:

- Choose a centre c from some distribution (somehow chosen by A).
- · Output a sample from  $\mathcal{D}_{\Lambda_{\sigma}^{\perp}(\mathsf{A}),s,\mathsf{c}}$ , where the Gaussian parameter s satisfies

$$s \geq \sqrt{m} \cdot \lambda_m(\Lambda_q^{\perp}(A)) \geq \eta_{\epsilon}(\Lambda_q^{\perp}(A))$$

with high probability.

#### STEP 2: GAUSSIAN VECTORS GENERATE THE LATTICE

We prove the following lattice generation theorem:

## Gaussian vectors generate the lattice

Let  $\Lambda \subseteq \mathbb{R}^m$  be any lattice and suppose  $s \ge \sqrt{m} \cdot \lambda_m(\Lambda)$ . Let  $\mathbf{x}_i \longleftrightarrow \mathcal{D}_{\Lambda,s,\mathbf{c}_i}$  for  $i=1,2,\ldots,t$  with arbitrary and potentially distinct centres  $\mathbf{c}_i$ . There exists  $t^* = O(m \cdot \log(s\sqrt{m}))$  s.t. if  $t \ge t^*$ , then  $\{\mathbf{x}_i\}_{i \in \{1,\ldots t\}}$  generates  $\Lambda$  with probability at least  $1-2^{-\Omega(m)}$ .

This was known only for  $\mathbf{c}_i \coloneqq \mathbf{0}, \forall i.^6$ 

<sup>&</sup>lt;sup>6</sup>Ishay Haviv and Oded Regev. On the Lattice Isomorphism Problem. In: 25th SODA. ed. by Chandra Chekuri. ACM-SIAM, Jan. 2014, pp. 391–404. DOI: 10.1137/1.9781611973402.29.

## STEP 3: IMPROVED ANALYSIS OF SIEVES

We prove the following sieving theorem:

## Number of points in a ball

Let  $S = \{\mathbf{x}_1, \dots, \mathbf{x}_t\} \subseteq \mathbb{R}^m$  be any set of t distinct vectors of norm  $\|\mathbf{x}_i\| \leq \beta$ .

Let  $1 < r = o(\log m)$  be some improvement ratio.

There exists  $t^* \leq 2^{O(m \log r)}$  s.t., if  $t \geq t^*$ , then there exist i, j s.t.  $0 < ||\mathbf{x}_i - \mathbf{x}_j|| \leq \beta/r$ .

Previous sieve analyses were

- · heuristic (assuming vectors are uniformly distributed on the surface of a sphere) and
- only for r = O(1).

## STEP 4: FINDING ONE MILDLY SHORT VECTOR

Suppose there exists a PPT entropic k-H-SIS solver  $\mathcal B$  with ratio r>1.

We construct a  $(2^{O(m)}, poly(m))$  time/memory k-H-SIS solver  $\mathcal{B}'$  with constant ratio r' < 1.

#### Basic Idea

Run entropic kHSIS solver  ${\cal B}$  many times to get  $2^{\Omega(m)}$  vectors, then apply sieving theorem.

# STEP 4: FINDING ONE MILDLY SHORT VECTOR (MORE DETAILS)

- 1. Success probability amplification: Repeat  ${\cal B}$  to make success probability overwhelming.
- 2. Randomised memory-inefficient sieve:
  - Fill random tape of (amplified)  $\mathcal{B}$  with  $t \geq 2^{\Omega(m)}$  independent randomness  $\chi_1, \ldots, \chi_t$ .
  - For each  $i, j \in [t]$ :
    - · Compute  $\mathbf{x}_i \leftarrow \mathcal{B}(\mathbf{A}, \mathbf{U}; \chi_i)$ .
    - · Compute  $\mathbf{x}_i \leftarrow \mathcal{B}(\mathbf{A}, \mathbf{U}; \chi_i)$ .
    - Output  $\mathbf{x}_i \mathbf{x}_i$  if  $0 < ||\mathbf{x}_i \mathbf{x}_i|| \le ||\mathbf{U}|| / r'$ .
    - Entropic-ness of  $\mathcal{B}$  + sieving theorem  $\implies$  Successful output with overwhelming probability.
- 3. Derandomisation: derandomise the double-loop with sub-exp. secure PRF.

## STEP 5: FINDING LOTS OF MILDLY SHORT VECTORS

Suppose further that the entropic kHSIS solver  ${\cal B}$  has Gaussian outputs.

We construct a  $(2^{O(m)}, poly(m))$  sieving routine C:

Input (A, U) where U generates  $\Lambda_q^{\perp}(A)$ .

Output  $U' \subset \Lambda_q^{\perp}(A)$  generating  $\Lambda_q^{\perp}(A)$  with  $\|U'\| \leq \|U\|/r'$ .

#### Basic Idea

Run  $\mathcal{B}'$  many times to get  $\Omega(m \cdot \log(s\sqrt{m}))$  vectors, then apply lattice generation theorem.

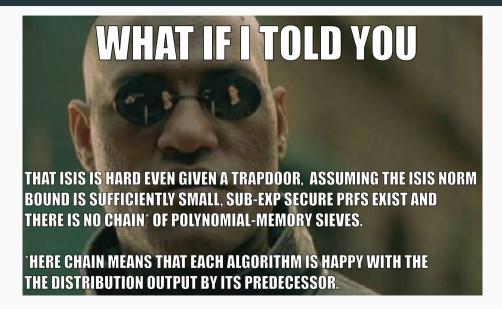
## STEP 6: ITERATED SIEVING

Assume the existence of a chain of entropic k-H-SIS solvers  $\mathcal{B}_1, \mathcal{B}_2, \ldots$  with Gaussian outputs with arbitrary (small) centres, accepting Gaussian inputs with arbitrary (small) centres.

We construct a  $(2^{O(m)}, \text{poly}(m))$ -memory algorithm which solves  $\text{SIVP}_{\gamma}$  for  $\Lambda_q^{\perp}(\mathbf{A})$  with  $\gamma \geq m$ .

#### Basic Idea

Feed output of sieving subroutine to itself until improvement stops.



# DESIGNERS PLEASE CONSIDER WHETHER YOU CAN RE-USE ONE OF THOSE MANY NEWFANGLED ASSUMPTIONS BEFORE INTRODUCING YET ANOTHER ONE.

CRYPTANALYSTS ANALYSE THEM!