Matthieu Rivain

New Trends in PQC Workshop

Oxford, 11 June, 2024

Joint work with Thibauld Feneuil

https://ia.cr/2022/1407

Original TCitH framework (Asiacrypt'23)

https://ia.cr/2023/1573

Improved TCitH framework (preprint)

Roadmap

- MPC-in-the-Head paradigm
- TC-in-the-Head framework (and application to PQ signatures)
 - TCitH with Merkle trees
 - ▲ TCitH with GGM trees
 - ★ TCitH using multiplication homomorphism
 - TCitH using packed secret sharing
- Application: post-quantum ring signatures
- Relation to other proof systems

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

X Hash function signature

Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} Accept & \text{if } F(x) = y \\ Reject & \text{if } F(x) \neq y \end{cases}$$

MPC-in-the-Head transform

Zero-knowledge proof

MPC model

Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- ℓ -private
- Semi-honest model

 $[\![x]\!]$ is a linear secret sharing of x

MPC model

Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- \(\ell \)-private
- Semi-honest model
- Broadcast model

 $[\![x]\!]$ is a linear secret sharing of x

<u>Prover</u> <u>Verifier</u>

① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, \ldots, [\![x]\!]_N)$

<u>Prover</u> <u>Verifier</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, \ldots, [\![x]\!]_N)$
- 2 Run MPC in their head

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $\mathrm{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

2 Run MPC in their head

4 Open parties in I

Additive sharing:

$$x = [\![x]\!]_1 + \dots + [\![x]\!]_N$$

 $(\llbracket x \rrbracket_i, \rho_i)_{i \in I}$

Thoose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \mathcal{C}$.

- Commitments $\mathrm{Com}^{\rho_i}([\![x]\!]_i)$
- MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

 $\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$

 $\mathrm{Com}^{\rho_N}([\![x]\!]_N)$

2 Run MPC in their head

Generated using a GGM seed tree [KKW18]:

 $(\llbracket x \rrbracket_i)$

<u>Prover</u> <u>Verifier</u>

<u>Prover</u> <u>Verifier</u>

Prover

① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$

$$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$$
 \dots
 $\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

Only $log_2 N$ seeds to be revealed:

es

ties

 $(\llbracket x \rrbracket_i)$ $\varphi(\llbracket x \rrbracket_i)$

TC-in-the-Head framework (with Merkle trees)

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- $\operatorname{\mathsf{Com}}^{
 ho_1}(\llbracket x
 rbracket_1)$ \cdots $\operatorname{\mathsf{Com}}^{
 ho_N}(\llbracket x
 rbracket_N)$

2 Run MPC in their hea

4 Open parties in I

Shamir secret sharing:

$$[\![x]\!]_i := P(e_i) \quad \forall i$$

for
$$P(X) := x + r_1 \cdot X + \dots + r_{\ell} \cdot X^{\ell}$$

n set of parties t. $|I| = \ell$.

 $\operatorname{Com}^{
ho_i}(\llbracket x
rbracket_i)$ ion $\llbracket lpha
rbracket_i = arphi(\llbracket x
rbracket_i)$ scept

<u>Prover</u>

Verifier

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- $\begin{array}{c} \mathbf{Com}^{\rho_1}(\llbracket x \rrbracket_1) \\ \cdots \\ \mathbf{Com}^{\rho_N}(\llbracket x \rrbracket_N) \end{array}$

2 Run MPC in their hea

4 Open parties in I

Shamir secret sharing:

$$\begin{split} \llbracket x \rrbracket_i &:= P(e_i) \quad \forall i \\ \text{for } P(X) &:= x + r_1 \cdot X + \dots + r_\ell \cdot X^\ell \\ &\Rightarrow \ell\text{-privacy} \end{split}$$

m set of parties t. $|I| = \ell$.

 $\operatorname{Com}^{
ho_i}(\llbracket x
rbracket_i)$ tion $\llbracket lpha
rbracket_i = arphi(\llbracket x
rbracket_i)$ ccept

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their hea

4 Open parties in I

Shamir secret sharing:

$$\begin{split} \llbracket x \rrbracket_i &:= P(e_i) \quad \forall i \\ \text{for } P(X) &:= x + r_1 \cdot X + \dots + r_{\ell} \cdot X^{\ell} \\ &\Rightarrow \ell\text{-privacy} \end{split}$$

We use $\ell \ll N$ (e.g. $\ell = 1$)

n set of parties .t. $|I|=\mathscr{C}$.

 $\operatorname{Com}^{
ho_i}(\llbracket x
rbracket_i)$ tion $\llbracket lpha
rbracket_i = arphi(\llbracket x
rbracket_i)$ ccept

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

$$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$$
...
 $\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

2 Run MPC in their head

Committed using a Merkle tree:

 $([\![x]\!]_i)$

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

parties

C.

 $\left| \right|_{i}$

 $= \varphi(\llbracket x \rrbracket_i)$

Prover

V C I I I I C

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

 \Rightarrow soundness error = $(N - \ell)/N$

P

 $\begin{bmatrix} 1 \end{bmatrix}_i$ $= \varphi(\llbracket x \rrbracket_i)$

<u>Prover</u>

VCIIIC

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

- \Rightarrow soundness error = $(N \ell)/N$
 - broadcast messages must be valid Shamir's sharings

parties

C.

 \mathbb{I}_i

 $= \varphi(\llbracket x \rrbracket_i)$

Prover

VCIIIC

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

$$\Rightarrow$$
 soundness error = $(N - \ell)/N$

$$\Rightarrow$$
 soundness error = $\frac{1}{\binom{N}{\ell}}$

Prover

VCIIIC

Soundness

p = "false positive probability" = $P[MPC \text{ protocol accepts } [x]] \text{ while } f(x) \neq y]$

Soundness

- p = "false positive probability"
 - = $P[MPC \text{ protocol accepts } [x]] \text{ while } f(x) \neq y]$

$$\frac{1}{N} + p$$

Soundness error of standard MPCitH

- p = "false positive probability"
 - = $P[MPC \text{ protocol accepts } [x]] \text{ while } f(x) \neq y]$

- p = "false positive probability"
 - = $P[MPC \text{ protocol accepts } [x]] \text{ while } f(x) \neq y]$

$$\frac{1}{\binom{N}{\ell}} + p \left(\frac{\ell(N-\ell)}{\ell+1}\right)$$
 Why?

$$\frac{1}{\binom{N}{\ell}} + p \left(\frac{\ell(N-\ell)}{\ell+1}\right)$$
 Why?

- Prover can commit invalid sharings
- Let $[x]^{(J)}$ = sharing interpolating $([x]_i)_{i \in J}$
- Many different $[x]^{(J)} \Rightarrow$ many possible false positives

$$\frac{1}{\binom{N}{\ell}} + p \left(\frac{\ell(N-\ell)}{\ell+1}\right)^{\frac{N}{N}}$$
 Why?

- Prover can commit invalid sharings
- Let $[x]^{(J)}$ = sharing interpolating $([x]_i)_{i \in J}$
- Many different $[x]^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"

- Verifier \rightarrow Prover : random $\{\gamma_j\}$
- Prover \rightarrow Verifier : $[\![\xi]\!] = \Sigma_j \gamma_i \cdot [\![x_j]\!]$
- Before MPC computation

$$\frac{1}{\binom{N}{\ell}} + p \left(\frac{\ell(N-\ell)}{\ell+1}\right)^{\frac{N}{N}}$$
 Why?

- Prover can commit invalid sharings
- Let $[x]^{(J)}$ = sharing interpolating $([x]_i)_{i \in J}$
- Many different $[x]^{(J)} \Rightarrow$ many possible false positives
- "Degree-enforcing commitment scheme"

- Verifier \rightarrow Prover : random $\{\gamma_j\}$
- Prover \rightarrow Verifier : $[\![\xi]\!] = \Sigma_j \gamma_i \cdot [\![x_j]\!]$
- Before MPC computation

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

MPCitH + seed trees	TCitH
+ hypercube [AGHHJY23]	$\ell = 1$

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH ℓ = 1	
Prover runtime	Party emulations log N +1 Symmetric crypto: O(N)	Party emulations 2 Symmetric crypto: O(N)	

fewer party emulations

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH ℓ = 1	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: O(N)	
Verifier runtime	Party emulations log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations 1 Symmetric crypto: O(log N)	

fewer party emulations

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH ℓ = 1
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)

much lesssymmetric crypto

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH ℓ = 1	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	
Verifier runtime	Party emulations: log N Symmetric crypto: O(N)	Party emulations: 1 Symmetric crypto: O(log N)	
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB	

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

	$\begin{array}{c c} & \text{MPCitH} \\ & + \text{ seed trees} \\ & + \text{ hypercube [AGHHJY23]} \end{array} \qquad \qquad \begin{array}{c} \text{TCitH} \\ \ell = 1 \end{array}$		
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: O(N)	
Verifier runtime	Party emulations: log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations: 1 Symmetric crypto: O(log N)	
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB	
Number of parties		$N \leq \mathbb{F} $	

$$\ell = 1 \Rightarrow \text{Similar soundness: } \frac{1}{N} + p$$

	MPCitH + seed trees + hypercube [AGHHJY23]	TCitH ℓ = 1	
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>	
Verifier runtime	Party emulations: log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations: 1 Symmetric crypto: O(log N)	
Size of tree G	128-bit security: ~2KB etting rid of these lim		(
Number of parties	→ TCitH with GGM	tree $N \leq \mathbb{F} $	(

TC-in-the-Head framework with GGM trees

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$
 with $P_j(X) = 1 - (1/e_j) \cdot X$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a **Shamir's secret sharing** [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$

with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[\![x]\!] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$= x + \Delta_x$$

$$0 \rightarrow Party N$$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$
 with $P_j(X) = 1 - (1/e_j) \cdot X$

$$[x] = (P(e_1), ..., P(e_N))$$
 is a valid Shamir's secret sharing of x

$$+ r_N = x + \Delta_x$$

$$\rightarrow$$
 Party 1

$$\rightarrow$$
 Party 2

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

$$\square\square\square\square$$
 \longrightarrow Party N

(since
$$P_i(e_i) = 0$$
)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$
 with $P_j(X) = 1 - (1/e_j) \cdot X$

$$[x] = (P(e_1), ..., P(e_N))$$
 is a valid Shamir's secret sharing of x

$$+ r_N = x + \Delta_x$$

 \rightarrow Party 1

Party i can compute

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

$$\begin{array}{c} \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \end{array} \begin{array}{$$

(since
$$P_i(e_i) = 0$$
)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$
 with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$+ r_N = x + \Delta_x$$

 \rightarrow Party 1

Party i can compute

$$\rightarrow$$
 Party 2

 $[\![x]\!]_i = \sum_{i \neq i} r_j P_j(e_i)$

(since
$$P_i(e_i) = 0$$
)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$

with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$+ r_N = x + \Delta_x$$

 $\supset \rightarrow Party 1$

$$\rightarrow$$
 Party 2

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

$$\supset \bigwedge \longrightarrow Party N$$

(since
$$P_i(e_i) = 0$$
)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$
 with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$+ r_N = x + \Delta_x$$

 \rightarrow Party 1

Party i can compute

$$\rightarrow$$
 Party 2

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

(since
$$P_i(e_i) = 0$$
)

% Can be adapted to $\ell > 1$

Size of GGM tree

© Good soundness (only valid sharings)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \Delta_x + \sum_j r_j P_j(X)$$
 with $P_j(X) = 1 - (1/e_j) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$+ r_N = x + \Delta_x$$

 \rightarrow Party 1

$$\rightarrow$$
 Party 2

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

$$O(X) \rightarrow Party N$$

(since
$$P_i(e_i) = 0$$
)

% Can be adapted to $\ell > 1$

Loose fast verification

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms) Hypercube (ms)		TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

Party emulations =
$$1 + \left\lceil \frac{\log_2 N}{\log_2 |\mathbb{F}|} \right\rceil$$

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

Party emulations =
$$1 + \left\lceil \frac{\log_2 N}{\log_2 |\mathbb{F}|} \right\rceil = \begin{cases} 2 & \text{if } |\mathbb{F}| \ge N \\ \vdots & \vdots \\ 1 + \log_2 N & \text{if } |\mathbb{F}| = 2 \end{cases}$$

	Additive MPCitH		TCitH (GGN	GM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving	
Party emulations / repetition	N	$1 + \log_2 N$	$1 + \left\lceil \frac{\log_2 N}{\log_2 \mathbb{F} } \right\rceil$		
AlMer	4.53	3.22	3.22	-0 %	
Biscuit	17.71	4.65	4.24	-16 %	
MIRA	384.26	20.11	9.89	-51 %	
MiRitH-la	54.15	6.60	5.42	-18 %	
MiRitH-Ib	89.50	8.66	6.66	-23 %	
MQOM-31	96.41	11.27	8.74	-21 %	
MQOM-251	44.11	7.56	5.97	-21 %	
RYDE	12.41	4.65	4.65	-0 %	
SDitH-256	78.37	7.23	5.31	-27 %	
SDitH-251	19.15	7.53	6.44	-14 %	

- Comparison based on a generic MPCitH library (Clibmpcith)
- Code for MPC protocols fetched from the submission packages

Using multiplication homomorphism & packed secret sharing

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

Simple protocol to verify polynomial constraints

•
$$w$$
 valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$
 - parties locally compute

$$\llbracket \alpha \rrbracket = \llbracket v \rrbracket + \sum_{j=1}^{m} \gamma_j \cdot f_j(\llbracket w \rrbracket)$$

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$
 - parties locally compute

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$
 - parties locally compute

Using multiplication homomorphism

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$
 - parties locally compute

Using multiplication homomorphism

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$
 - parties locally compute

Using multiplication homomorphism

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$
 - parties locally compute

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	4 048 B	-15 %
MIRA	5 640 B	5 340 B	-5 %
MiRitH-la	5 665 B	4 694 B	-17 %
MiRitH-Ib	6 298 B	5 245 B	-17 %
MQOM-31	6 328 B	4 027 B	-37 %
MQOM-251	6 575 B	4 257 B	-35 %
RYDE	5 956 B	5 281 B	-11 %
SDitH	8 241 B	7 335 B	-27 %
MQ over GF(4)	8 609 B	3 858 B	-55 %
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

^{*} N = 256

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	3 431 B	
MIRA	5 640 B	4 314 B	
MiRitH-la	5 665 B	3 873 B	
MiRitH-Ib	6 298 B	4 250 B	
MQOM-31	6 328 B	3 567 B	
MQOM-251	6 575 B	3 418 B	
RYDE	5 956 B	4 274 B	
SDitH	8 241 B	5 673 B	
MQ over GF(4)	8 609 B	3 301 B	
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

^{*} N = 256 * N = 2048

Shorter signatures for MPCitH-based candidates

Two very recent works:

- Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. https://ia.cr/2024/490
 - General techniques to reduce the size of GGM trees
 - Apply to TCitH-GGM (gain of ~500 B at 128-bit security)
- Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support
 Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541
 - New MPC protocols for TCitH / VOLEitH signatures based on MinRank & Rank SD

• Shamir's secret sharing can be packed

$$P(\omega_1) = x_1$$
, ..., $P(\omega_s) = x_s$

$$P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$$

•
$$[x]_1 = P(e_1), \dots, [x]_N = P(e_N)$$

Shamir's secret sharing can be packed

$$P(\omega_1) = x_1$$
, ..., $P(\omega_s) = x_s$

$$P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$$

$$[x]_1 = P(e_1), \dots, [x]_N = P(e_N)$$

•
$$[x] + [y] = \text{sharing of } (x_1, ..., x_s) + (y_1, ..., y_s)$$

•
$$[x] \cdot [y] = \text{ sharing of } (x_1, ..., x_s) \cdot (y_1, ..., y_s)$$

• Shamir's secret sharing can be packed

$$P(\omega_1) = x_1, \quad \dots, \quad P(\omega_s) = x_s$$

$$P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$$

$$[x]_1 = P(e_1), \dots, [x]_N = P(e_N)$$

•
$$[x] + [y] = \text{sharing of } (x_1, ..., x_s) + (y_1, ..., y_s)$$

•
$$[x] \cdot [y] = \text{ sharing of } (x_1, ..., x_s) \cdot (y_1, ..., y_s)$$

$$\frac{\binom{d_{\alpha}}{\ell}}{\binom{N}{\ell}} + p$$

Soundness error

• Shamir's secret sharing can be packed

$$P(\omega_1) = x_1$$
, ..., $P(\omega_s) = x_s$

$$P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$$

$$[x]_1 = P(e_1), \dots, [x]_N = P(e_N)$$

- $[x] + [y] = \text{sharing of } (x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{ sharing of } (x_1, ..., x_s) \cdot (y_1, ..., y_s)$

Here: $(\ell + s - 1) \cdot \deg f_i$

Soundness error

• Shamir's secret sharing can be packed

$$P(\omega_1) = x_1$$
, ..., $P(\omega_s) = x_s$

$$P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$$

$$[x]_1 = P(e_1), \dots, [x]_N = P(e_N)$$

- $[x] + [y] = \text{sharing of } (x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{ sharing of } (x_1, ..., x_s) \cdot (y_1, ..., y_s)$

Here: $(\ell + s - 1) \cdot \deg f_j$

Soundness error

- Packed sharing & Merkle trees $\approx \div$ witness size by s
 - ⇒ interesting for statements with "medium size" witness

• Shamir's secret sharing can be packed

$$P(\omega_1) = x_1, \dots, P(\omega_s) = x_s$$

$$P(\omega_{s+1}) = r_1, \dots, P(\omega_{s+\ell}) = r_{\ell}$$

$$[x]_1 = P(e_1), \dots, [x]_N = P(e_N)$$

- $[x] + [y] = \text{sharing of } (x_1, ..., x_s) + (y_1, ..., y_s)$
- $[x] \cdot [y] = \text{ sharing of } (x_1, ..., x_s) \cdot (y_1, ..., y_s)$

Here: $(\ell + s - 1) \cdot \deg f_j$

Soundness error

- Packed sharing & Merkle trees $\approx \div$ witness size by s \Rightarrow interesting for statements with "medium size" witness
- E.g. an ISIS statement $\vec{t} = A \cdot \overrightarrow{e}$ with $\|\overrightarrow{e}\|_{\infty} \leq \beta$

TCitH-GGM	TCitH-MT
Smaller tree	▲ Larger tree (~x2)

TCitH-GGM	TCitH-MT
🎄 Smaller tree	♣ Larger tree (~x2)
No advantage of packed sharing	Takes advantage of packed sharing

TCitH-GGM	TCitH-MT
🎄 Smaller tree	▲ Larger tree (~x2)
No advantage of packed sharing	Takes advantage of packed sharing
Naturally enforce degree of committed sharings	Need degree enforcing commitment (+1 round)

TCitH-GGM	TCitH-MT				
🎄 Smaller tree	♣ Larger tree (~x2)				
No advantage of packed sharing	Takes advantage of packed sharing				
Naturally enforce degree of committed sharings	Need degree enforcing commitment (+1 round)				
	Better for "medium-size" statements				

Application: post-quantum ring signatures

- Secret key w
- ullet One-way function f
- Public key y = f(w)
- MPC protocol $\Pi : [\![w]\!] \mapsto 0/1$

signature scheme

- Secret key w
- ullet One-way function f
- Public key y = f(w)
- MPC protocol $\Pi : [w] \mapsto 0/1$

- Secret keys $w_1, ..., w_r$
- Public keys $y_1, ..., y_r$
- MPC protocol

$$\Pi' : [[w_{j^*}]], [[j^*]] \mapsto 0/1$$

- Secret key w
- ullet One-way function f
- Public key y = f(w)
- MPC protocol $\Pi : [w] \mapsto 0/1$

- Secret keys $w_1, ..., w_r$
- Public keys $y_1, ..., y_r$
- MPC protocol

$$\Pi': [\![w_{j^*}]\!], [\![j^*]\!] \mapsto 0/1$$

TCitH FS ring signature scheme

Idea:

▶ One-hot encoding of j^*

$$s = (0,...,0, s_{j^*} := 1, 0,...,0)$$

▶ One-hot encoding of j^*

$$s = (0,...,0, s_{j^*} := 1, 0,...,0)$$

 $\qquad \qquad \blacksquare \text{ } \text{ } \square' \text{ computes } \quad \llbracket y_{j^*} \rrbracket = \sum_{j=1}^r \llbracket s_j \rrbracket \cdot y_j$

Idea:

▶ One-hot encoding of j^*

$$s = (0,...,0, s_{j^*} := 1, 0,...,0)$$

 $\cent{@Problem}: including [s] to the witness <math>\cent{@Problem}$ signature size

Idea:

▶ One-hot encoding of j^*

$$s = (0,...,0, s_{j*} := 1, 0,...,0)$$

- $\qquad \qquad \blacksquare \text{ } \text{ } \text{ } \Pi' \text{ computes } \quad \llbracket y_{j^*} \rrbracket = \sum_{j=1}^r \llbracket s_j \rrbracket \cdot y_j$
- $\cent{ iny Problem:}$ including $\cent{ iny [s]}$ to the witness $\cent{ outsign}$ $\cent{ iny $\mathcal{O}(r)$}$ signature size

$$\text{ \widetilde{X} Solution: } \llbracket s^{(1)} \rrbracket, \ldots, \llbracket s^{(d)} \rrbracket \text{ s.t. } s = s^{(1)} \otimes \cdots \otimes s^{(d)}$$

$$\Rightarrow \mathcal{O}(d\sqrt[d]{r})$$
 signature size $\Rightarrow \mathcal{O}(\log r)$

Protocol Π'

Protocol Π'

Input: $[w], [s^{(1)}], ..., [s^{(d)}]$

1. Locally compute $[\![s]\!] = [\![s_1]\!] \otimes \cdots \otimes [\![s_d]\!]$

Protocol Π'

- 1. Locally compute $[\![s]\!] = [\![s_1]\!] \otimes \cdots \otimes [\![s_d]\!]$
- 2. Locally compute $[[y_{j*}]] = \sum_{j=1}^{r} [[s_j]] \cdot y_j$

Protocol Π'

- 1. Locally compute $[s] = [s_1] \otimes \cdots \otimes [s_d]$
- 2. Locally compute $[[y_{j*}]] = \sum_{j=1}^{r} [[s_j]] \cdot y_j$
- 3. Check that [w], $[y_{j^*}]$ satisfy $f(w) = y_{j^*}$ using Π

Protocol Π'

- 1. Locally compute $[s] = [s_1] \otimes \cdots \otimes [s_d]$
- 2. Locally compute $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$
- 3. Check that [w], $[y_{j^*}]$ satisfy $f(w) = y_{j^*}$ using Π
- 4. Check that [s] is the sharing of a one-hot encoding

Protocol Π'

- 1. Locally compute $[s] = [s_1] \otimes \cdots \otimes [s_d]$
- 2. Locally compute $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$
- 3. Check that $\llbracket w \rrbracket$, $\llbracket y_{j^*} \rrbracket$ satisfy $f(w) = y_{j^*}$ using Π
- 4. Check that [s] is the sharing of a one-hot encoding

Protocol Π'

Input: $[w], [s^{(1)}], ..., [s^{(d)}]$

- 1. Locally compute $[s] = [s_1] \otimes \cdots \otimes [s_d]$
- 2. Locally compute $[[y_{j^*}]] = \sum_{i=1}^r [[s_i]] \cdot y_i$
- 3. Check that [w], $[y_{i*}]$ satisfy $f(w) = y_{i*}$ using Π
- 4. Check that [s] is the sharing of a one-hot encoding

% Simple \blacksquare Π must be adapted to use $[y_{i^*}]$ instead of y_{i^*}

Protocol Π'

Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

- 1. Locally compute $[s] = [s_1] \otimes \cdots \otimes [s_d]$
- 2. Locally compute $[[y_{j^*}]] = \sum_{j=1}^r [[s_j]] \cdot y_j$
- 3. Check that [w], $[y_{j^*}]$ satisfy $f(w) = y_{j^*}$ using Π
- 4. Check that [s] is the sharing of a one-hot encoding

X Simple
MPC protocol

 Π must be adapted to use $[y_{i^*}]$ instead of y_{i^*}

! Sharing degrees increase

Protocol Π'

Input: [w], $[s^{(1)}]$, ..., $[s^{(d)}]$

- 1. Locally compute $[s] = [s_1] \otimes \cdots \otimes [s_d]$
- 2. Locally compute $[[y_{j*}]] = \sum_{j=1}^{r} [[s_j]] \cdot y_j$
- 3. Check that [w], $[y_{j^*}]$ satisfy $f(w) = y_{j^*}$ using Π
- 4. Check that [s] is the sharing of a one-hot encoding

TCitH / FS

ring signature scheme

X Simple MPC protocol

 \blacksquare I must be adapted to use $\llbracket y_{j^*} \rrbracket$ instead of y_{j^*}

Sharing degrees increase

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	-	250	-	-	456	-	LowMC	NIST V
GGHK [GGHAK22]	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
EZSLL [EZS ⁺ 19]	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafl [BKP20]	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari [BKP20]	2020	5	8	-	-	14	-	CSIDH	128 bit
LESS $[BBN^+22]$	2022	11	14	-	-	20	-	Code Equiv.	128 bit
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Application to MQ, SD, AES

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	8.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW KKW18	2018	-	250	-	-	456	-	LowMC	NIST V
GGHK GGHAK22	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
EZSLL EZS ⁺ 19]	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafl BKP20	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari BKP20	2020	5	8	-	-	14	-	CSIDH	128 bit
LESS [BBN ⁺ 22]	2022	11	14	-	-	20	-	Code Equiv.	128 bit
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Application to MQ, SD, AES

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	\$.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	-	250		_	456	-	LowMC	NIST V
GGHK GGHAK22	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor LAZ19	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
EZSLL EZS ⁺ 19]	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafl BKP20	2020	30	32	-	-	35	-	MSIS / MLWE	NIST I
Calamari BKP20	2020	5	8	-	-	14	-	CSIDH	128 bit
LESS BBN ⁺ 22	2022	11	14	-	-	20	-	Code Equiv.	128 bit
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Size range: 5–13 kB

for $|ring|=2^{20}$

Application to MQ, SD, AES

#users		2^3	2^6	2^8	2^{10}	2^{12}	2^{20}	Assumption	Security
Our scheme	2023	4.41	4.60	4.90	5.48	5.82	8.19	MQ over \mathbb{F}_{251}	NIST I
Our scheme	2023	4.30	4.33	4.37	4.45	4.60	5.62	MQ over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.51	8.40	8.72	9.36	10.30	12.81	SD over \mathbb{F}_{251}	NIST I
Our scheme	2023	7.37	7.51	7.96	8.24	3.40	10.09	SD over \mathbb{F}_{256}	NIST I
Our scheme	2023	7.87	7.90	7.94	8.02	8.18	9.39	AES128	NIST I
Our scheme	2023	6.81	6.84	6.88	6.96	7.12	8.27	AES128-EM	NIST I
KKW [KKW18]	2018	-	250		-	456	-	LowMC	NIST V
GGHK [GGHAK22]	2021	-	-	-	56	-	-	LowMC	NIST V
Raptor [LAZ19]	2019	10	81	333	1290	5161	-	MSIS / MLWE	100 bit
EZSLL [EZS ⁺ 19]	2019	19	31	-	-	148	-	MSIS / MLWE	NIST II
Falafl BKP20	2020	30	$\sqrt{32}$	-	-	35	-	MSIS / MLWE	NIST I
Calamari BKP20	2020	5	8	-	-	14	-	CSIDH	128 bit
LESS [BBN ⁺ 22]	2022	11	14	-	-	20	-	Code Equiv.	128 bit
MRr-DSS [BESV22]	2022	27	36	64	145	422	-	MinRank	NIST I

Size range: 5–13 kB

for $|ring|=2^{20}$

Previous works:

 \geq 14 kB for |ring|= 2^{10} no / slow implementations

Relation to other proof systems

MPCitH with additive sharing, e.g. [KKW18,BN20,DOT21]

Thank you!

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (EUROCRYPT 2023)

[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures" https://ia.cr/2024/490

[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank" https://ia.cr/2024/541

[CDI05] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)

[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" https://ia.cr/2022/1407 (ASIACRYPT 2023)

[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" https://ia.cr/2023/1573

[ISN89] Ito, Saito, Nishizeki: "Secret sharing scheme realizing general access structure" (Electronics and Communications in Japan 1989)

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)