Quiz with prizes!!

KING'S College

LONDON

Polynomial Commitments from Lattices

Ngoc Khanh Nguyen

Joint work with: Valerio Cini, Giulio Malavolta and Hoeteck Wee

Outline

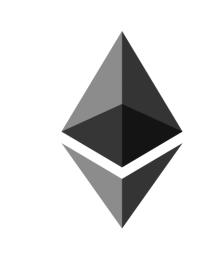
- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

SNARKs

ethereum

SNARKs

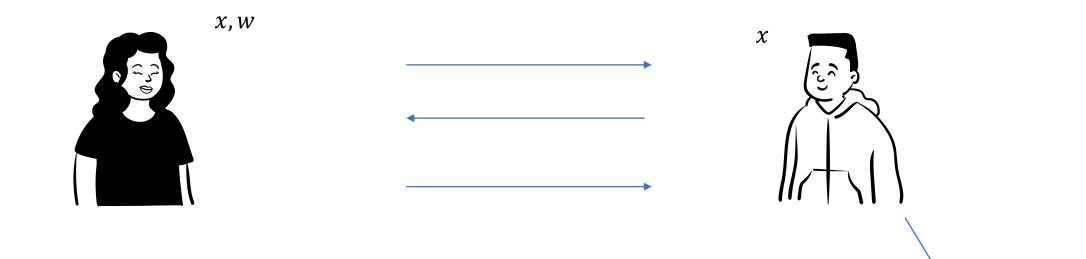
- Succinct
- Non-interactive
- ARgument (of)
- Knowledge



ethereum

Interactive Proof

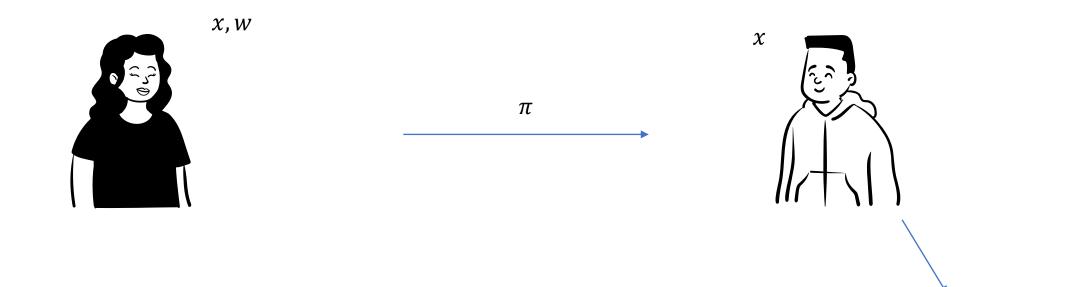
R(x,w)=1



<t

Non-Interactive Proof

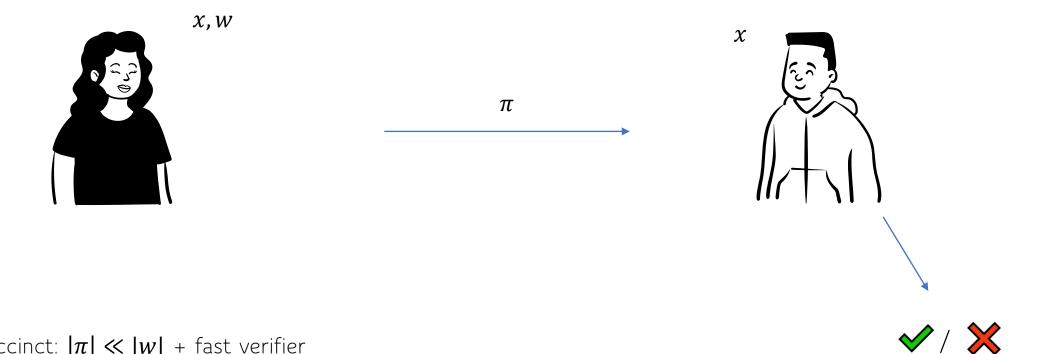
R(x,w)=1



<t

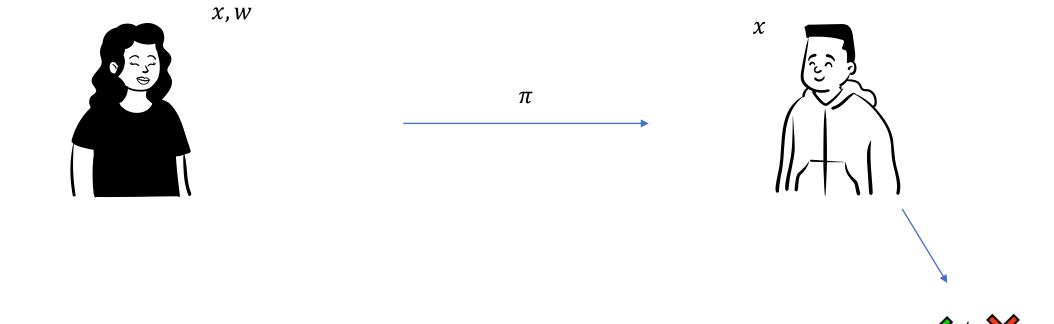
Succinct Non-Interactive Proof

R(x,w)=1



Succinct: $|\pi| \ll |w|$ + fast verifier

Succinct Non-Interactive Argument of Knowledge R(x,w) = 1

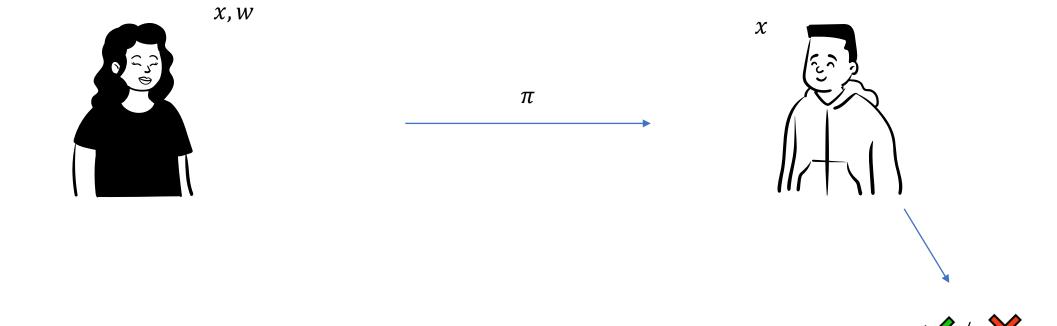


Succinct: $|\pi| \ll |w|$ + fast verifier

</ X

Knowledge soundness: If a prover can convince the verifier with high probability, then it ``must know $w^{\prime\prime}$.

Succinct Non-Interactive Argument of Knowledge R(x,w) = 1



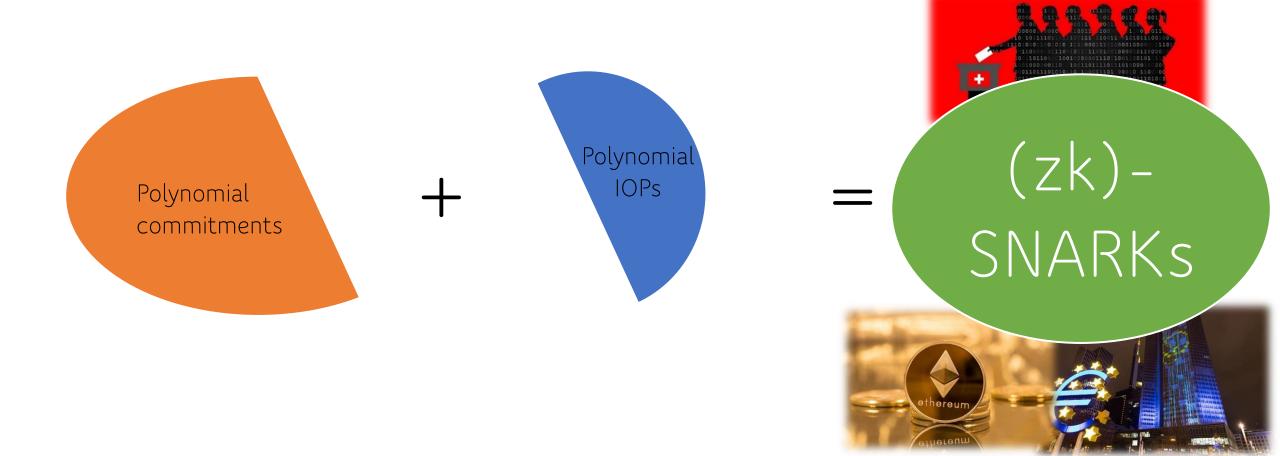
Succinct: $|\pi| \ll |w|$ + fast verifier

<t

Knowledge soundness: If a prover can convince the verifier with high probability, then it ``must know w''.

Argument: knowledge soundness holds under a computational assumption.

Applications of polynomial commitments



Polynomial $f \in R[X]$ of degree < L

t = Com(f; r)

Polynomial $f \in R[X]$ of degree < L

Binding: It's hard to find two different openings (f,r) and (f',r') such that Com(f;r) = Com(f';r').

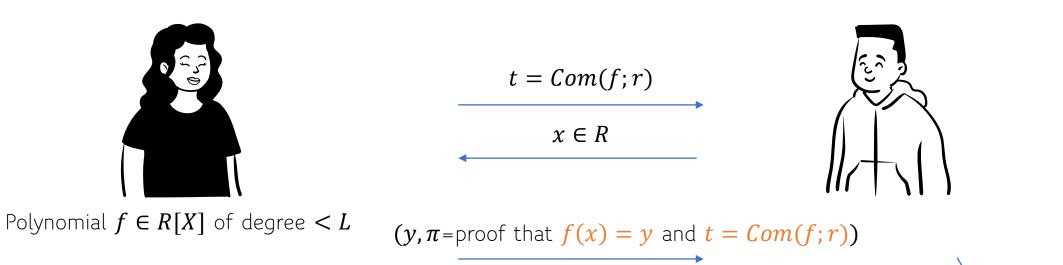
t = Com(f; r)

Polynomial $f \in R[X]$ of degree < L

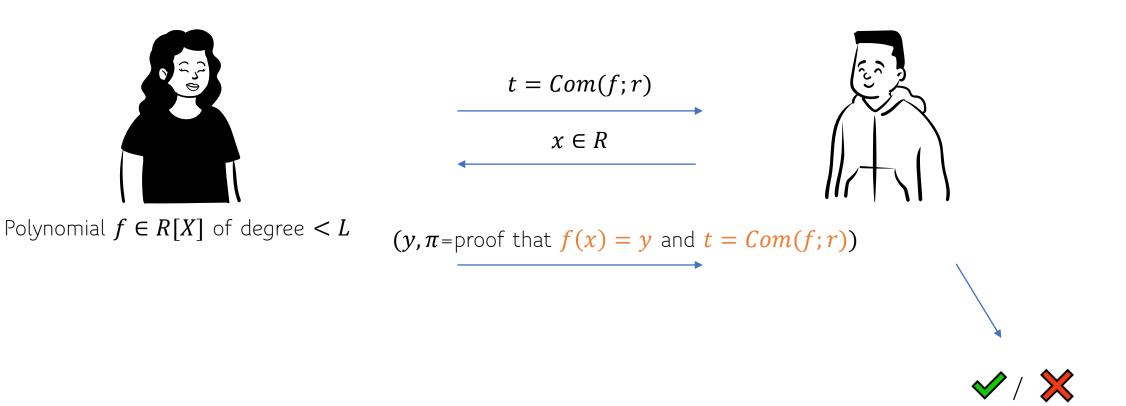
t = Com(f; r)

Binding: It's hard to find two different openings (f,r) and (f',r') such that Com(f;r) = Com(f';r'). Hiding:

The adversary can't learn any information about (f, r) from t



<t



Completeness:

For an honest prover the verifier accepts

Knowledge soundness:

If a prover can convince the verifier with high probability, then it ``must know f''.

Zero-knowledge/hiding:

the verifier does not learn anything about f from the interaction

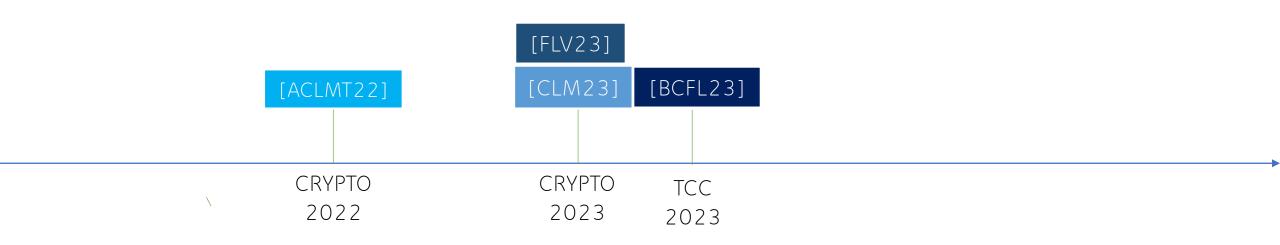
Succinctness:

The proof size and verifier runtime are $\ll L$, i.e. $poly(\lambda, \log L)$

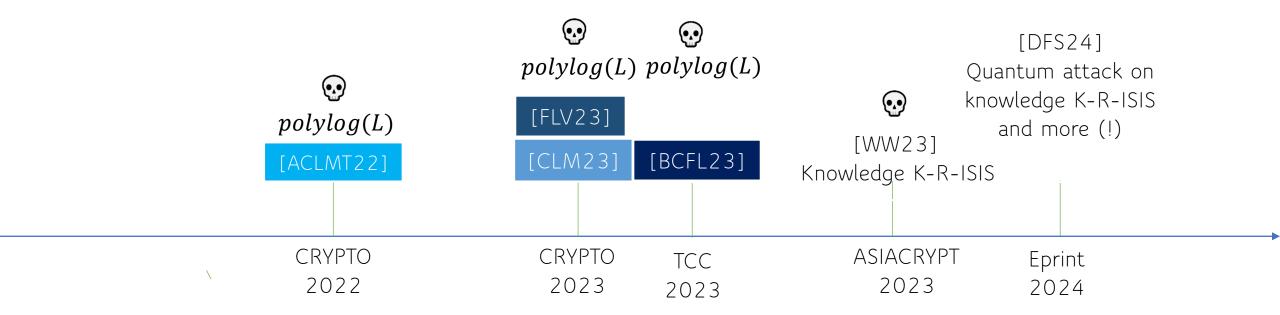
Outline

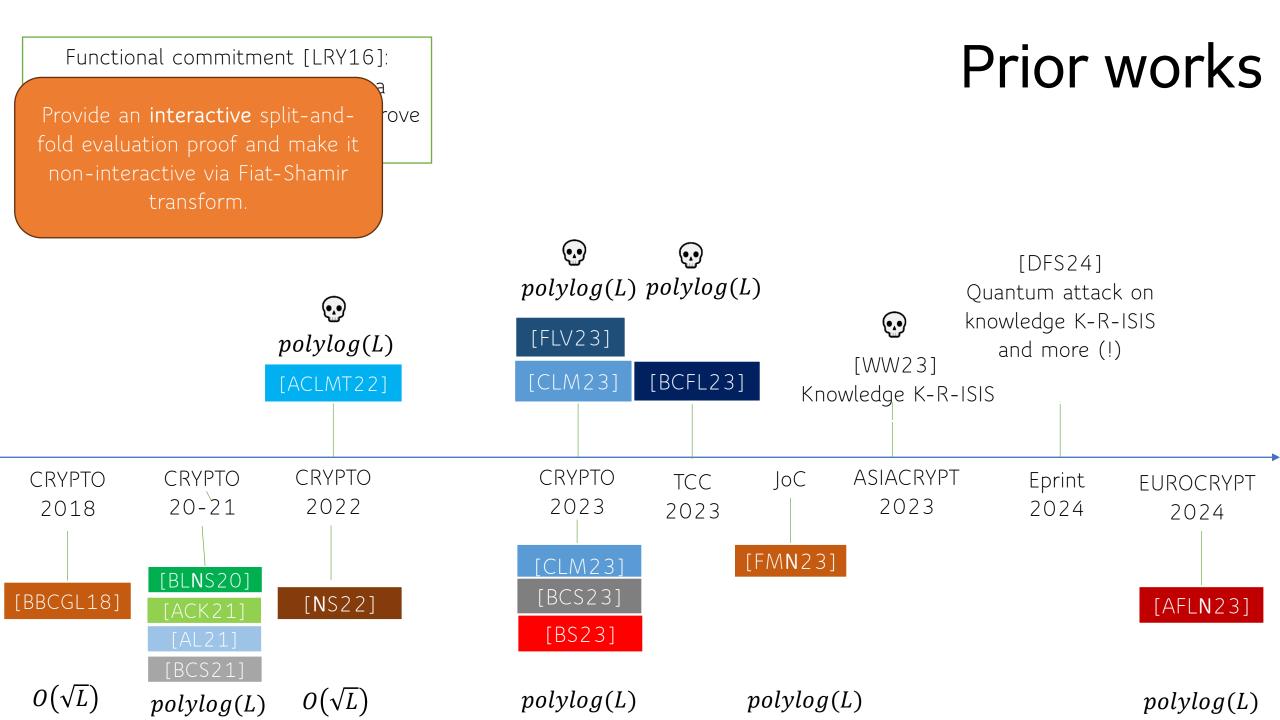
- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

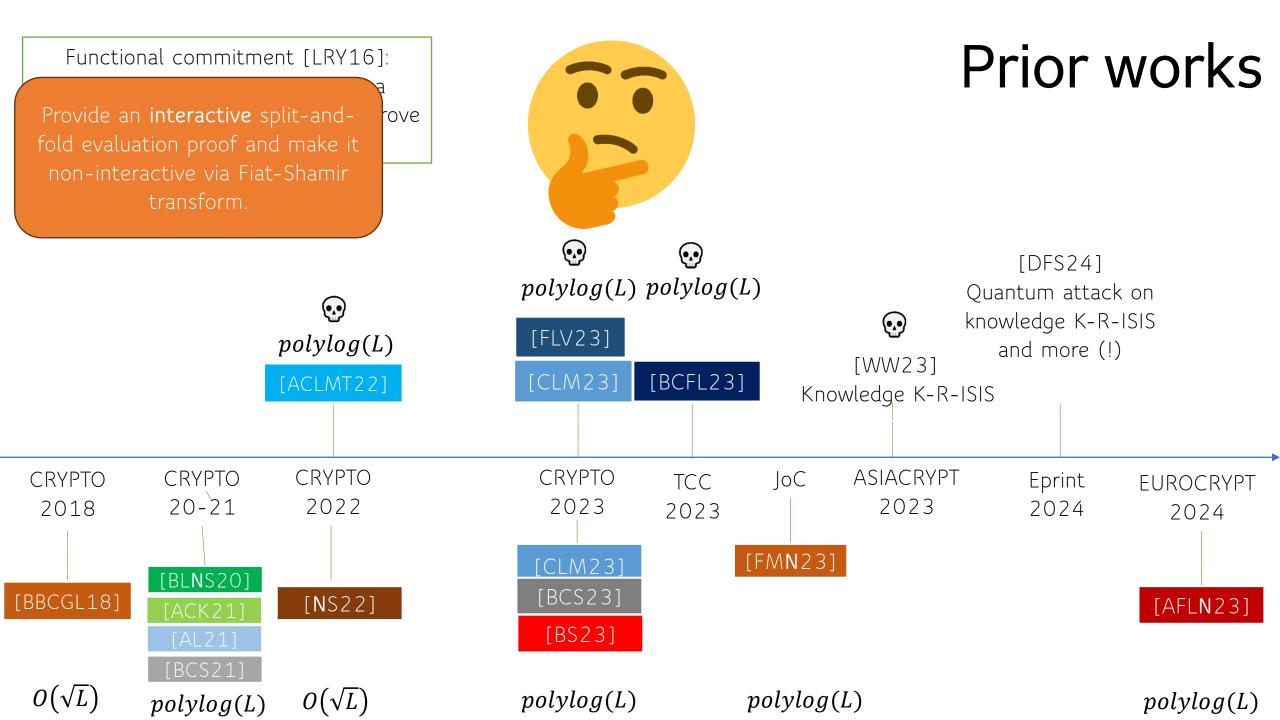
Functional commitment [LRY16]: commit to input x. Next, given a function f, output $y \coloneqq f(x)$ and prove that f(x) = y.

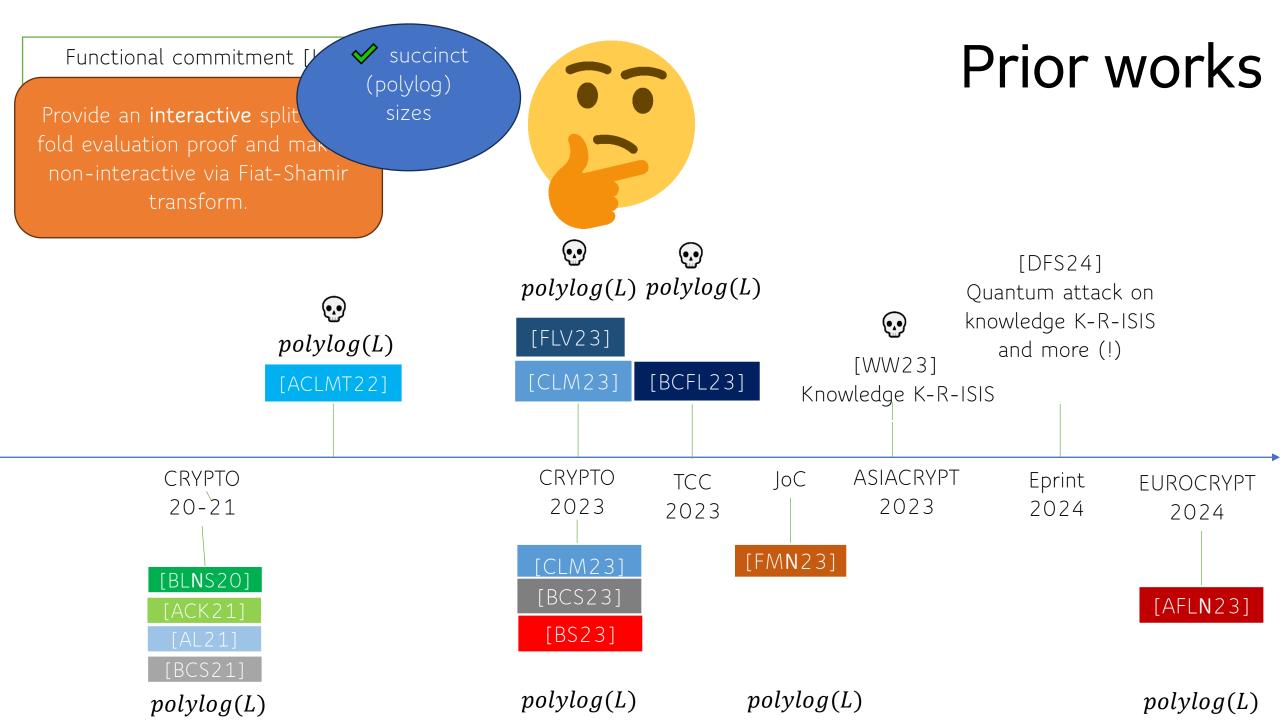


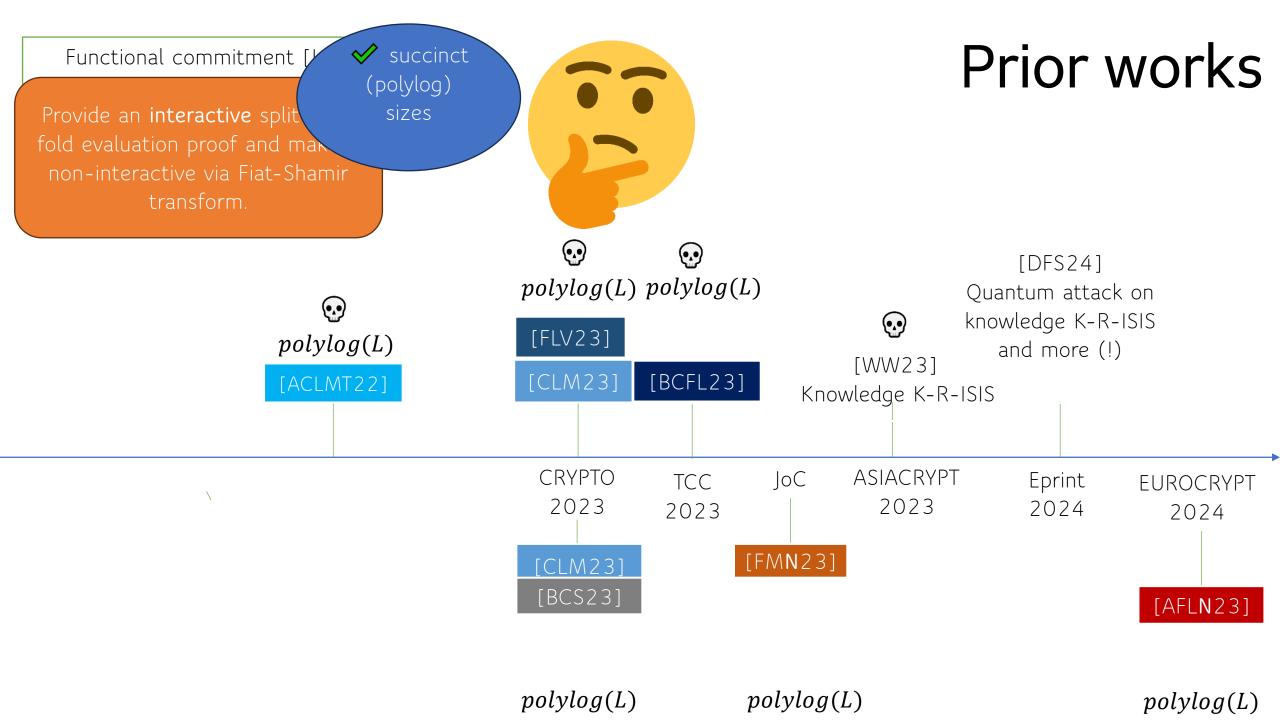
Functional commitment [LRY16]: commit to input x. Next, given a function f, output $y \coloneqq f(x)$ and prove that f(x) = y.

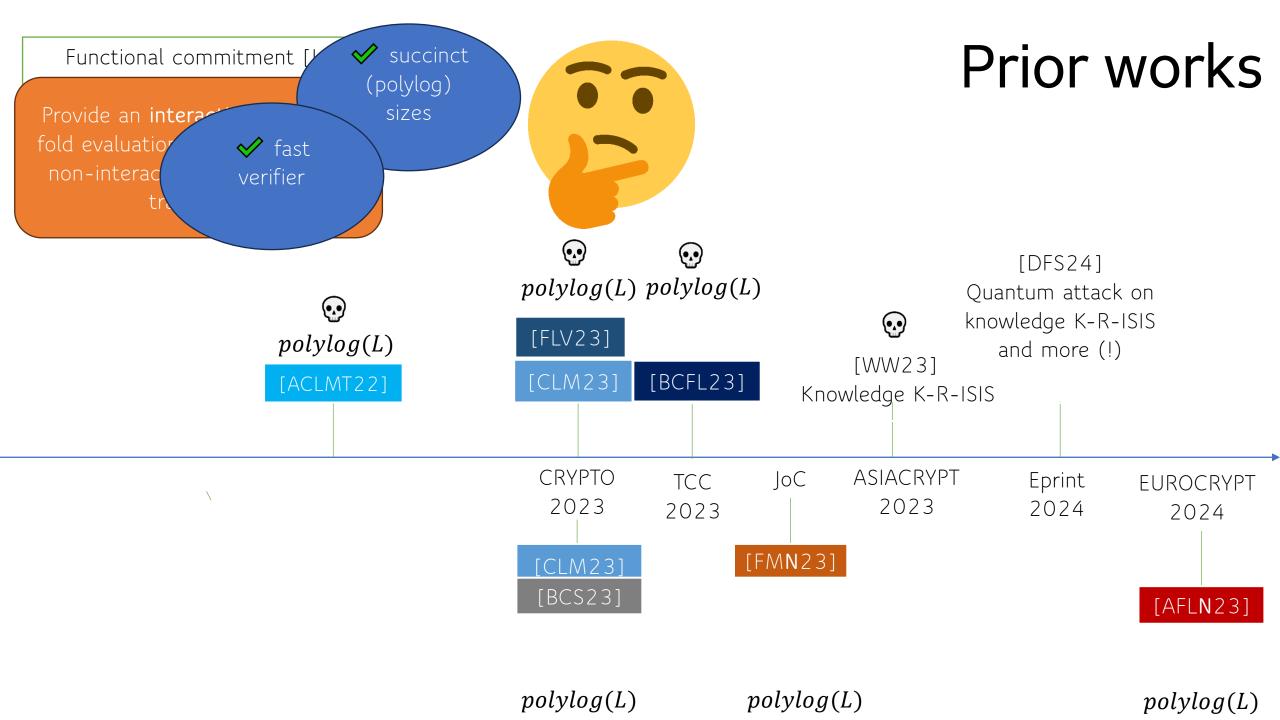


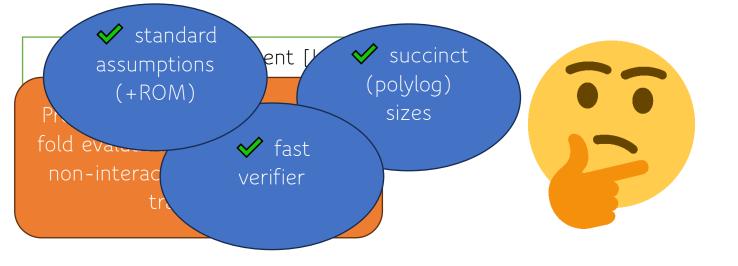


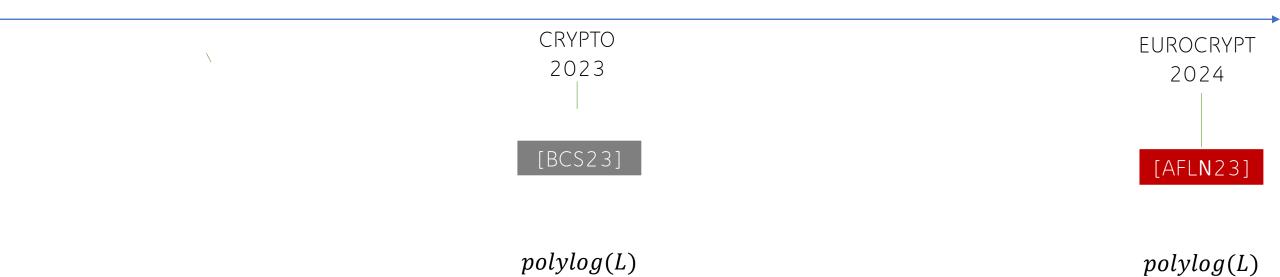


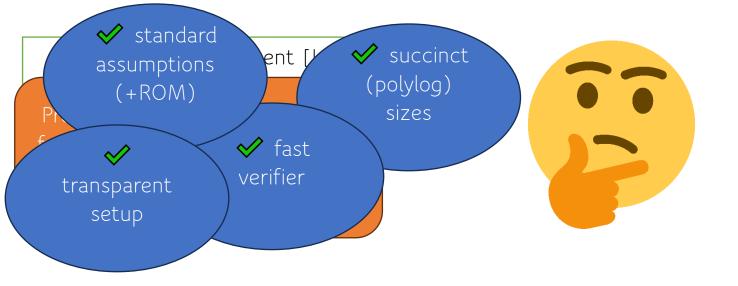






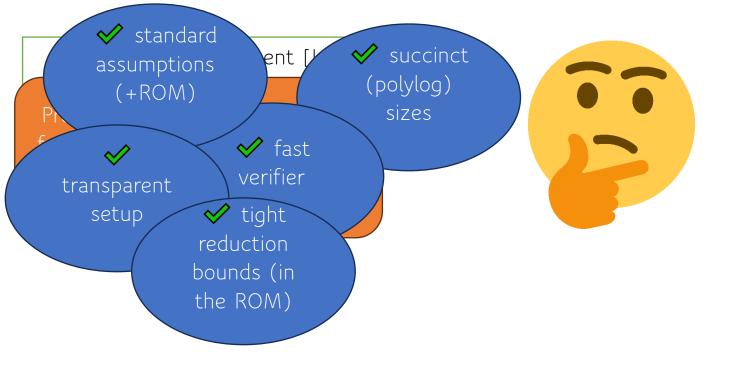




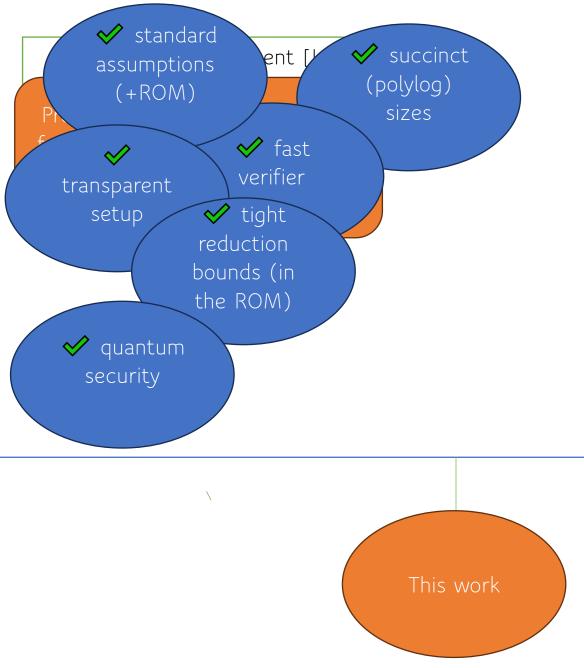


Prior works

polylog(L)



 \backslash

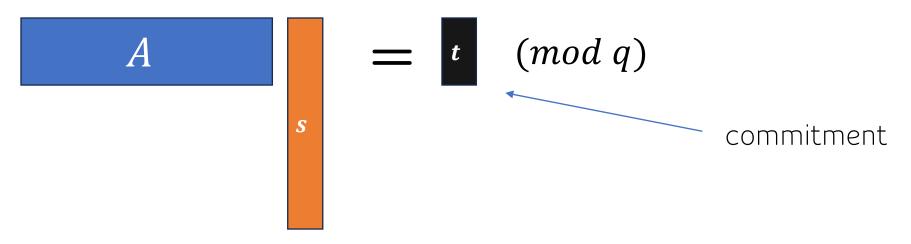


Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

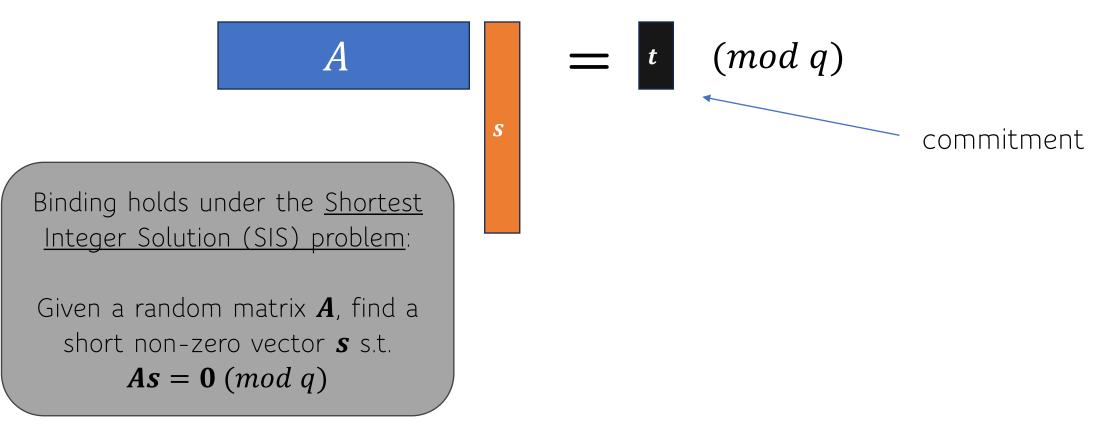
Ajtai commitment [Ajt96]

- Let \mathbb{Z}_q be a ring of integers modulo q.
- To commit to a short message vector **s**, we compute:



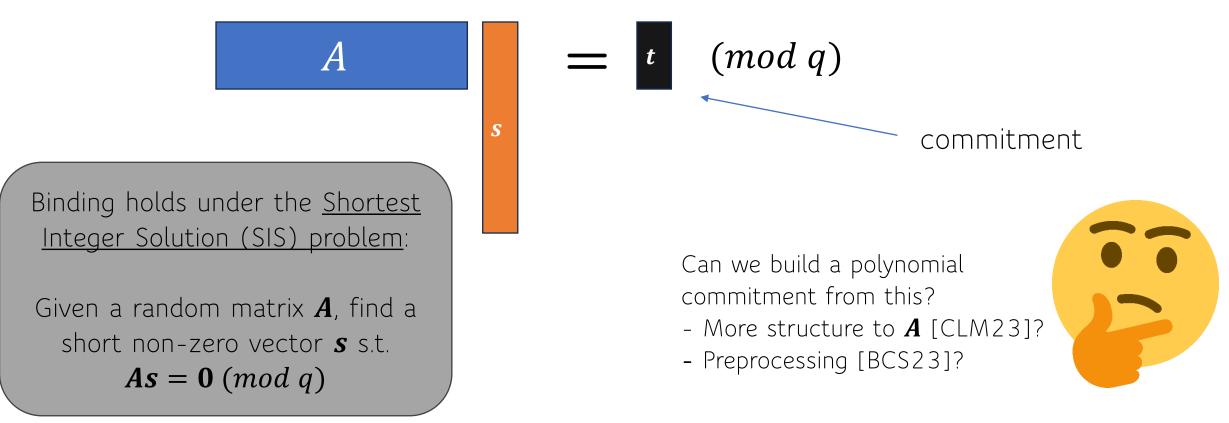
Ajtai commitment [Ajt96]

- Let \mathbb{Z}_q be a ring of integers modulo q.
- To commit to a short message vector **s**, we compute:



Ajtai commitment [Ajt96]

- Let \mathbb{Z}_q be a ring of integers modulo q.
- To commit to a short message vector **s**, we compute:



• Let
$$G_n = \begin{bmatrix} 1 & 2 & \dots & 2^{\log q} \end{bmatrix} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & [1 & 2^{\log q}] \end{bmatrix} \in \mathbb{Z}_q^{n \times n \log q}$$

• The binary decomposition function $G_n^{-1}:\mathbb{Z}_q^n\to\mathbb{Z}_q^{n\log q}$ satisfies for any $f\in\mathbb{Z}_q^n$:

$$G_n G_n^{-1}(\boldsymbol{f}) = \boldsymbol{f}$$

We will ignore the subscript.

• Let
$$G_n = \begin{bmatrix} 1 & 2 & 4 & \dots & 2^{\log q} \end{bmatrix} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & [1 & 2^{\log q}] \end{bmatrix} \in \mathbb{Z}_q^{n \times n \log q}$$

• The binary decomposition function $G_n^{-1}: \mathbb{Z}_q^n \to \mathbb{Z}_q^{n \log q}$ satisfies for any $f \in \mathbb{Z}_q^n$:

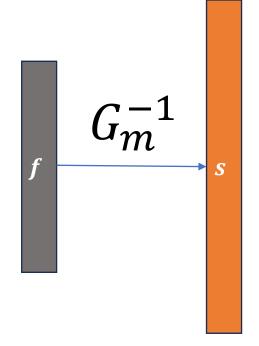
$$G_n G_n^{-1}(\boldsymbol{f}) = \boldsymbol{f}$$

We will ignore the subscript.

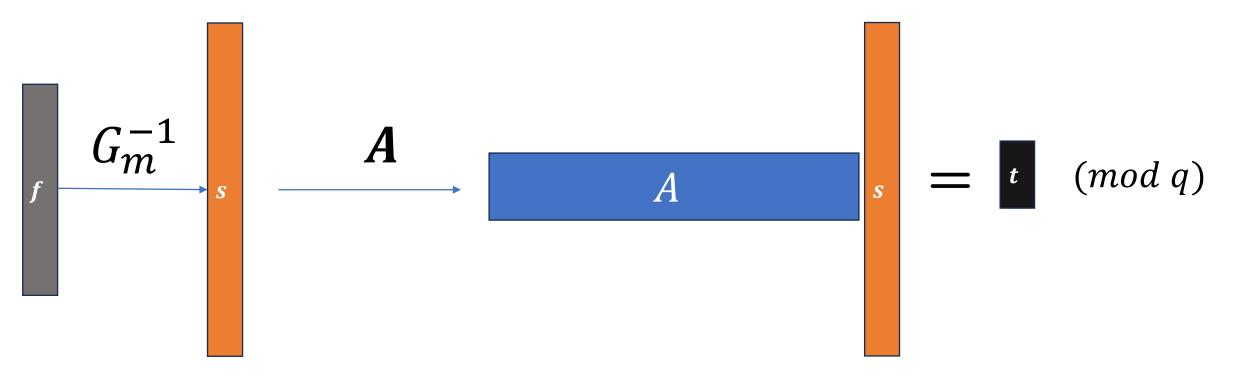
TLDR; Binarydecompose each entry of the vector

To commit to any message vector $f \in \mathbb{Z}_q^m$, we compute:

To commit to any message vector $f \in \mathbb{Z}_q^m$, we compute:

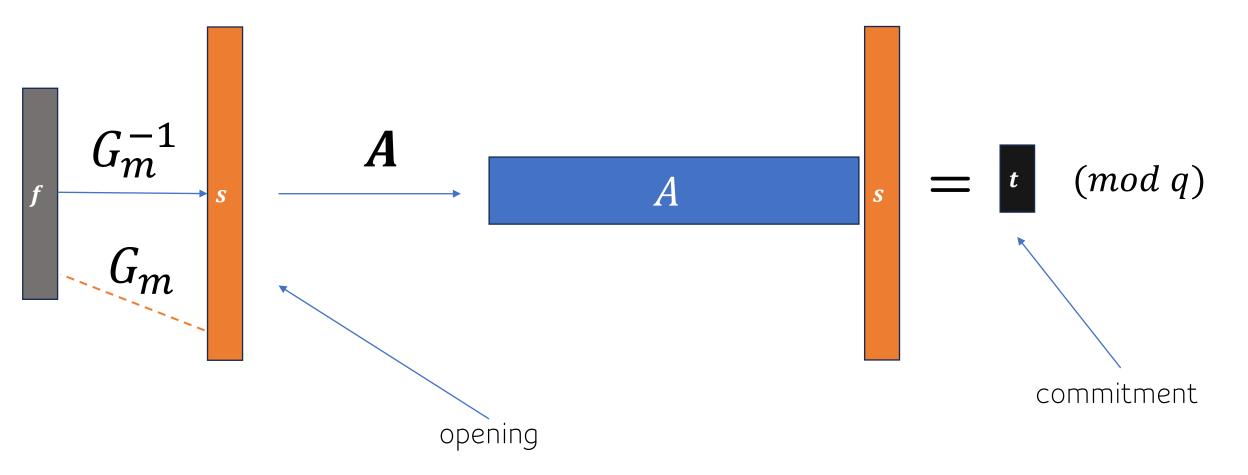


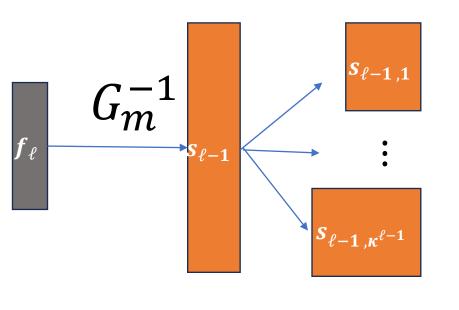
To commit to any message vector $f \in \mathbb{Z}_q^m$, we compute:



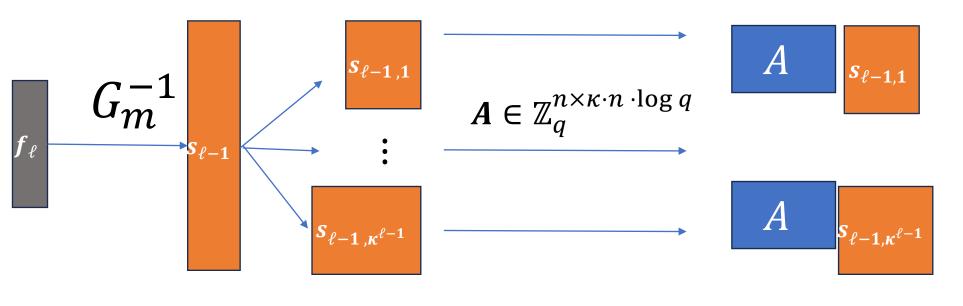
Ajtai commitment for large messages

To commit to any message vector $f \in \mathbb{Z}_q^m$, we compute:





$$\kappa^{\ell} \cdot n \qquad \kappa^{\ell} \cdot n \cdot \log q \qquad \kappa \cdot n \cdot \log q \qquad \text{each}$$





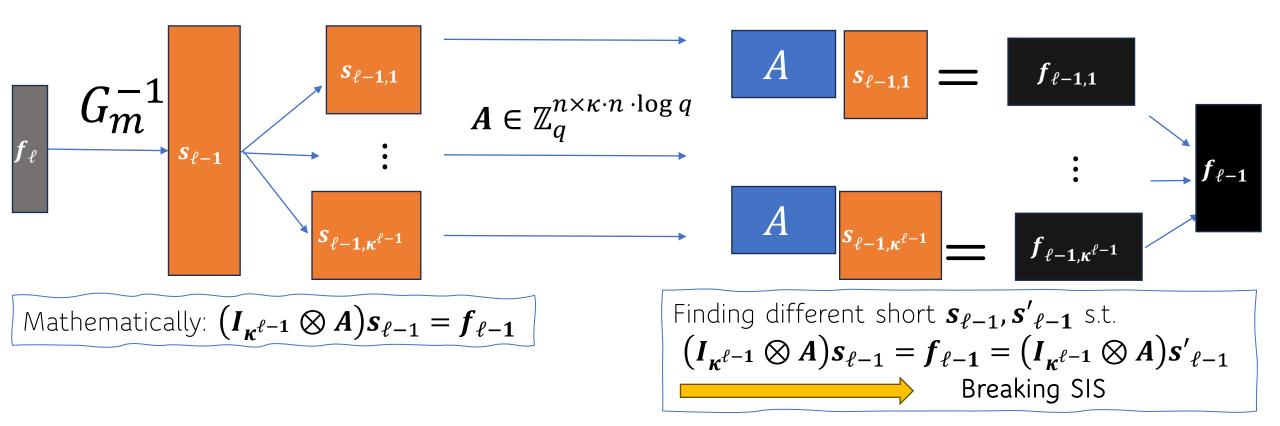
To commit to any message vector $f_\ell \in \mathbb{Z}_q^m$ of length $m = \kappa^\ell \cdot n$, we compute:

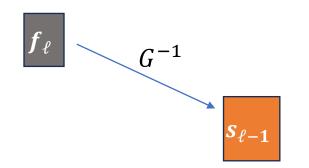


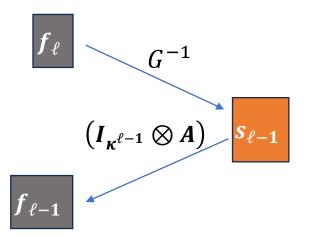
 $\kappa^{\ell-1}$

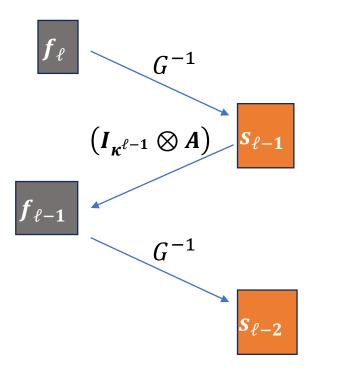
 $\cdot n$

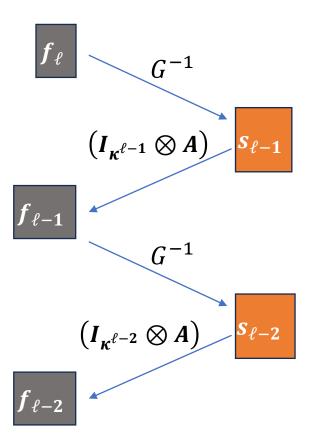
 $\kappa^{\ell} \cdot n$ $\kappa^{\ell} \cdot n \cdot \log q$ $\kappa \cdot n \cdot \log q$ neacheacheach

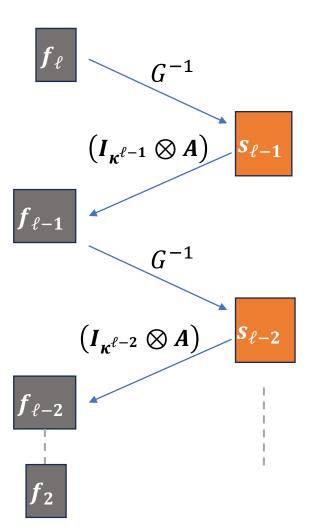


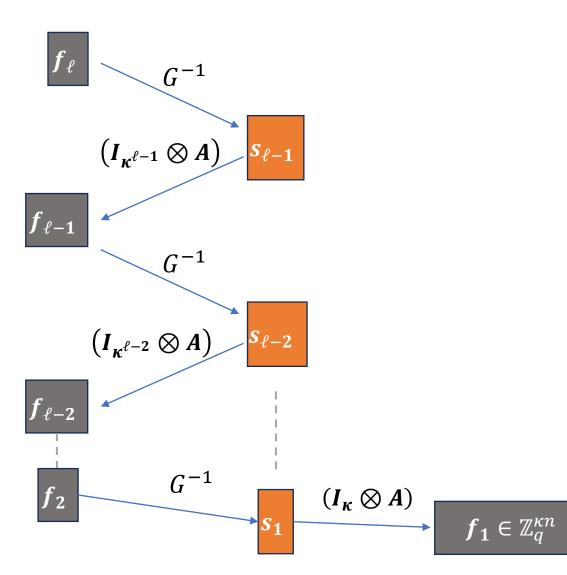


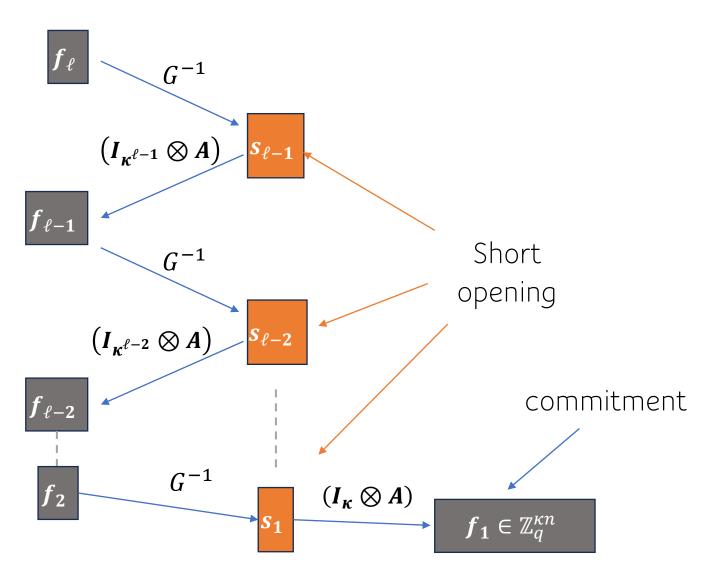


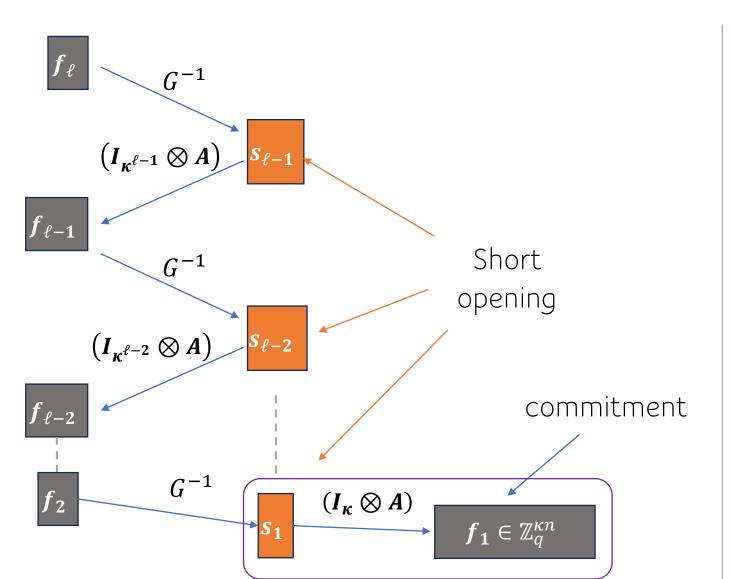




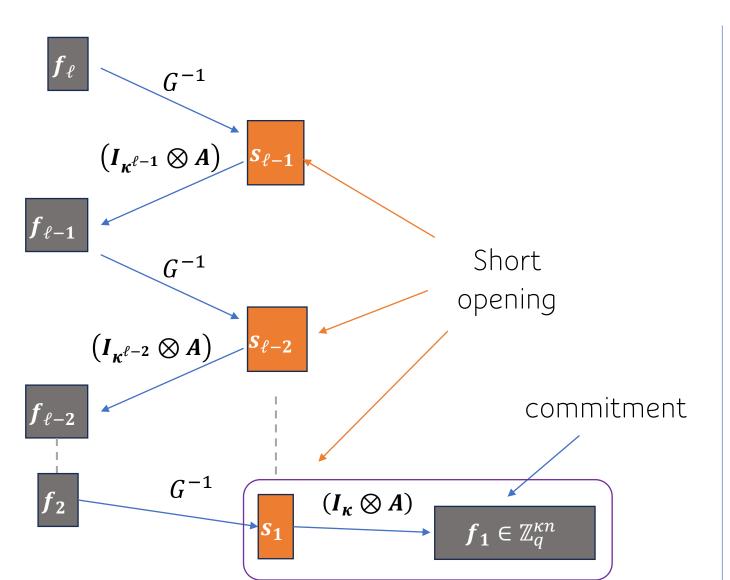






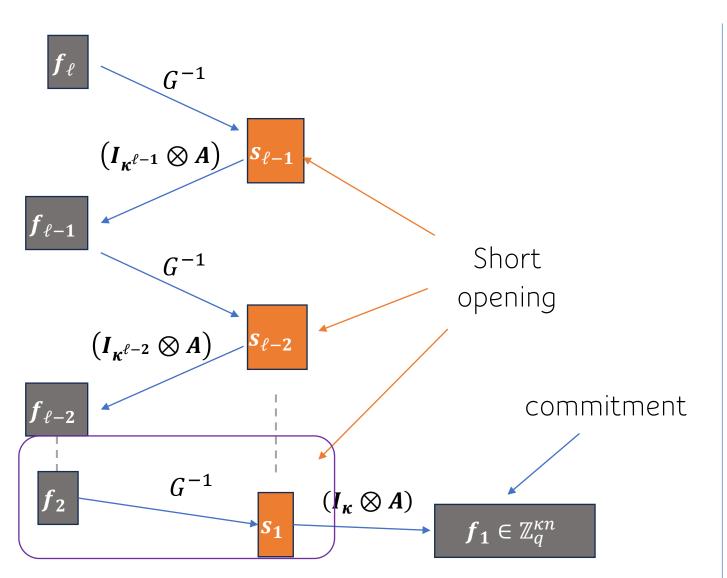


Opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \dots, s_{\ell-1}$ s.t.



Opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \dots, s_{\ell-1}$ s.t.

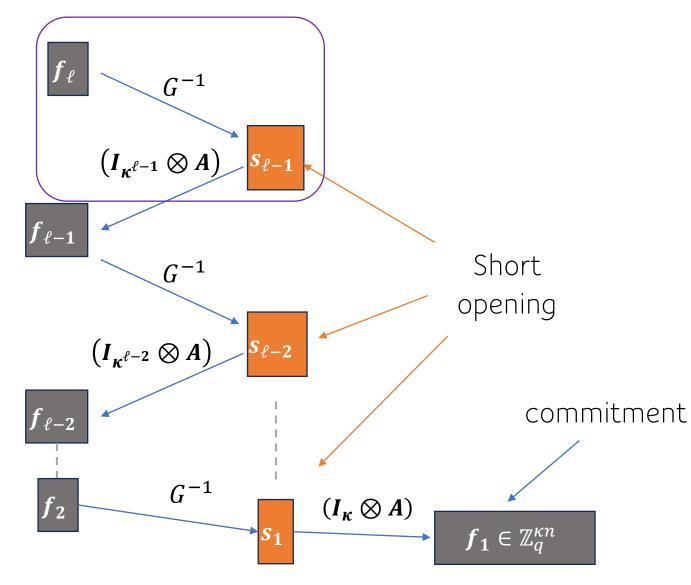
 $(I_{\kappa^1}\otimes A)s_1=f_1$



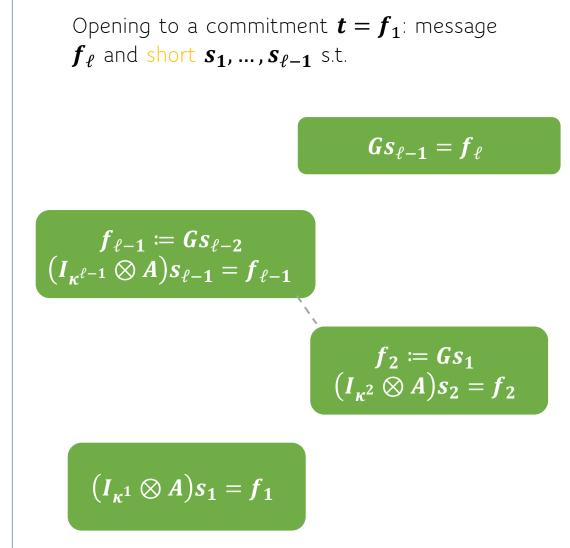
Opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \dots, s_{\ell-1}$ s.t.

 $\begin{aligned} f_2 \coloneqq Gs_1 \\ (I_{\kappa^2} \otimes A)s_2 &= f_2 \end{aligned}$

 $(I_{\kappa^1}\otimes A)s_1=f_1$



Opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \ldots, s_{\ell-1}$ s.t. $Gs_{\ell-1} = f_{\ell}$ $f_{\ell-1} \coloneqq Gs_{\ell-2} \\ (I_{\kappa^{\ell-1}} \otimes A)s_{\ell-1} = f_{\ell-1}$ $f_2 \coloneqq Gs_1$ $(I_{\kappa^2} \otimes A)s_2 = f_2$ $(\overline{I_{\kappa^1} \otimes A})s_1 = \overline{f_1}$

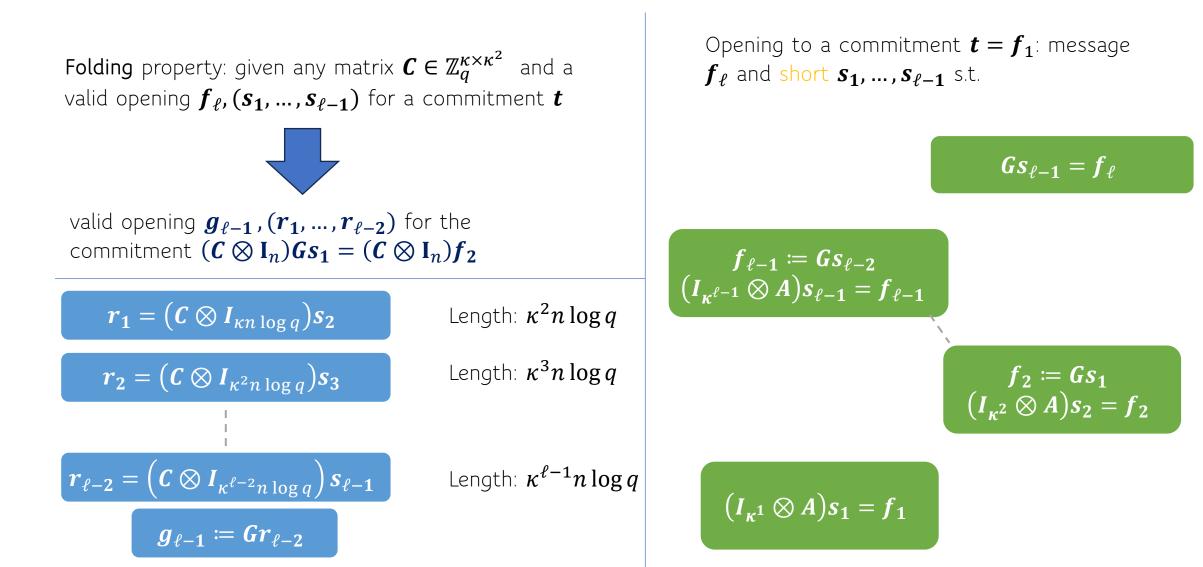


Opening to a commitment $t = f_1$: message Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa imes \kappa^2}$ and a f_{ℓ} and short $s_1, \dots, s_{\ell-1}$ s.t. valid opening f_{ℓ} , $(s_1, ..., s_{\ell-1})$ for a commitment tvalid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{G}\boldsymbol{s}_1 = (\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{f}_2$ $f_{\ell-1} \coloneqq Gs_{\ell-2} \\ (I_{\kappa^{\ell-1}} \otimes A)s_{\ell-1} = f_{\ell-1}$ $(I_{\kappa^1} \otimes A)s_1 = f_1$

 $Gs_{\ell-1} = f_{\ell}$

 $f_2 \coloneqq Gs_1$ $(I_{\kappa^2} \otimes A)s_2 = f_2$

Opening to a commitment $t = f_1$: message Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa imes \kappa^2}$ and a f_{ℓ} and short $s_1, \dots, s_{\ell-1}$ s.t. valid opening f_{ℓ} , $(s_1, ..., s_{\ell-1})$ for a commitment t $Gs_{\ell-1} = f_{\ell}$ valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{G}\boldsymbol{s_1} = (\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{f_2}$ $f_{\ell-1} \coloneqq Gs_{\ell-2} \\ (I_{\kappa^{\ell-1}} \otimes A)s_{\ell-1} = f_{\ell-1}$ $= (\boldsymbol{\mathcal{C}} \otimes \boldsymbol{\mathrm{I}}_n) (\boldsymbol{\mathrm{I}}_{\boldsymbol{\mathrm{r}}^2} \otimes \boldsymbol{\mathrm{A}}) \boldsymbol{\mathrm{s}}_2$ $(\boldsymbol{C} \otimes \mathbf{I}_n) \boldsymbol{f}_2$ $f_2 \coloneqq Gs_1$ $(I_{\kappa^2} \otimes A)s_2 = f_2$ $= (I_{\kappa} \otimes A) (C \otimes I_{\kappa n \log q}) s_2$ $(I_{\kappa^1} \otimes A)s_1 = f_1$ $= (I_{\kappa} \otimes A)r_{1}$



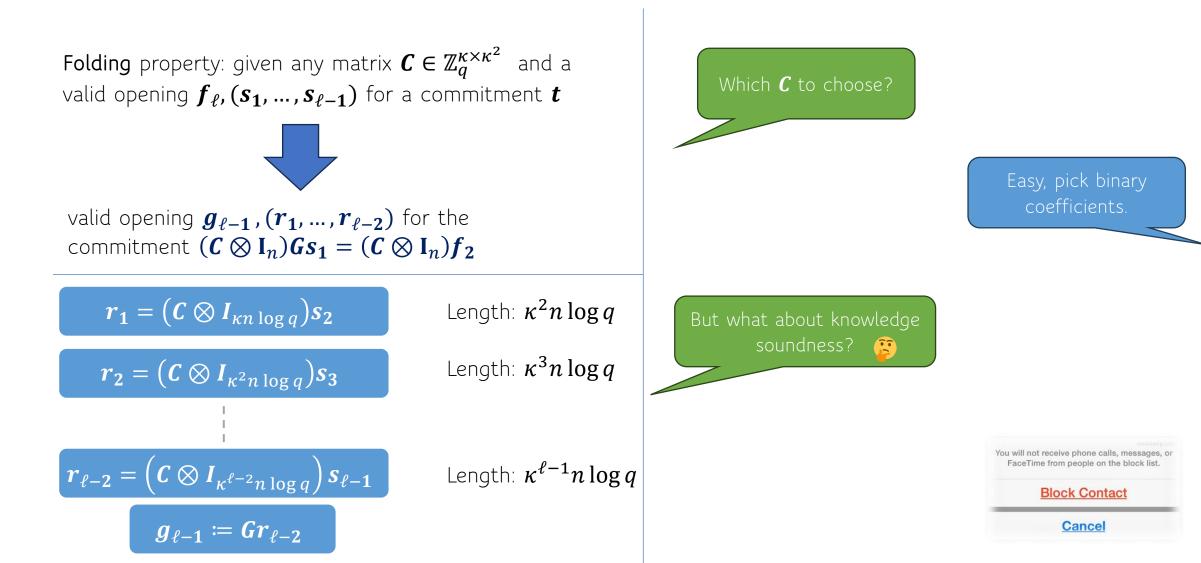
 $g_{\ell-1} \coloneqq Gr_{\ell-2}$

Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa imes \kappa^2}$ and a valid opening f_ℓ , $(s_1, ..., s_{\ell-1})$ for a commitment tvalid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{G}\boldsymbol{s_1} = (\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{f_2}$ $\boldsymbol{r_1} = (\boldsymbol{C} \otimes \boldsymbol{I_{\kappa n \log q}})\boldsymbol{s_2}$ Length: $\kappa^2 n \log q$ Length: $\kappa^3 n \log q$ $\boldsymbol{r}_2 = (\boldsymbol{C} \otimes \boldsymbol{I}_{\kappa^2 n \log q}) \boldsymbol{s}_3$ $\boldsymbol{r}_{\ell-2} = \left(\boldsymbol{C} \otimes \boldsymbol{I}_{\kappa^{\ell}-2n\log q}\right) \boldsymbol{s}_{\ell-1}$ Length: $\kappa^{\ell-1} n \log q$

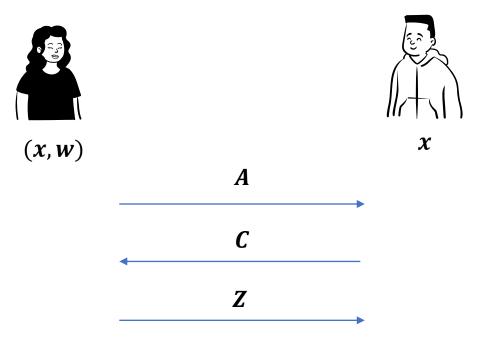
Proof of opening to the commitment $t = f_1$ Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa imes \kappa^2}$ and a valid opening f_{ℓ} , $(s_1, ..., s_{\ell-1})$ for a commitment tvalid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the $f_{\ell}, (s_1, \dots, s_{\ell-1})$ $\mathbf{s}_1 \in \mathbb{Z}_a^{\kappa^2 n \log q}$ commitment $(\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{G}\boldsymbol{s_1} = (\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{f_2}$ $\boldsymbol{r_1} = (\boldsymbol{C} \otimes \boldsymbol{I_{\kappa n \log q}})\boldsymbol{s_2}$ Length: $\kappa^2 n \log q$ С Check whether $\boldsymbol{s_1}$ is short and Length: $\kappa^3 n \log q$ $\boldsymbol{r}_2 = (\boldsymbol{C} \otimes \boldsymbol{I}_{\kappa^2 n \log q}) \boldsymbol{s}_3$ $(I_{\kappa^1} \otimes A)s_1 = f_1$ Length: $\kappa^{\ell-1} n \log q$ Prove knowledge of an opening $\overline{r_{\ell-2}} = \left(\overline{C \otimes I_{\kappa^{\ell-2}n \log q}}\right) s_{\ell-1}$ $g_{\ell-1}$, $(r_1, \ldots, r_{\ell-2})$ to the commitment $(C \otimes I_n)Gs_1$ $g_{\ell-1} \coloneqq Gr_{\ell-2}$

Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa imes \kappa^2}$ and a valid opening f_{ℓ} , $(s_1, ..., s_{\ell-1})$ for a commitment tvalid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{G}\boldsymbol{s_1} = (\boldsymbol{C} \otimes \mathbf{I}_n)\boldsymbol{f_2}$ $\boldsymbol{r_1} = (\boldsymbol{C} \otimes \boldsymbol{I_{\kappa n \log q}})\boldsymbol{s_2}$ Length: $\kappa^2 n \log q$ Length: $\kappa^3 n \log q$ $\boldsymbol{r}_2 = (\boldsymbol{C} \otimes \boldsymbol{I}_{\kappa^2 n \log q}) \boldsymbol{s}_3$ $\overline{r_{\ell-2}} = \left(\overline{C \otimes I_{\kappa^{\ell-2}n \log q}}\right) s_{\ell-1}$ Length: $\kappa^{\ell-1} n \log q$ $g_{\ell-1} \coloneqq Gr_{\ell-2}$

Easy, pick binary coefficients.

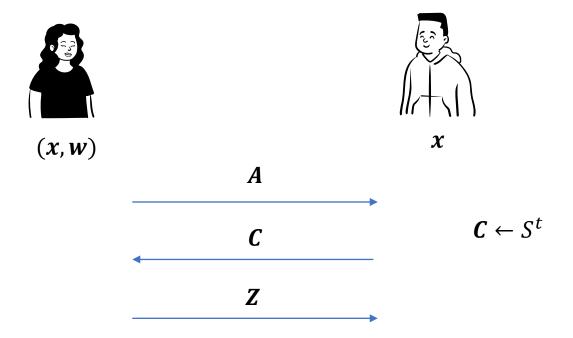


Coordinate-wise special soundness

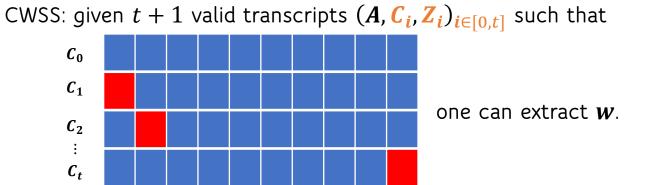


Special soundness: given two valid transcripts (A, C, Z) and (A, C', Z') with different $C \neq C'$, one can extract w.

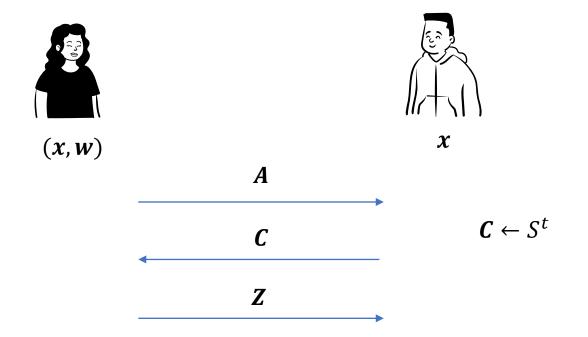
Coordinate-wise special soundness



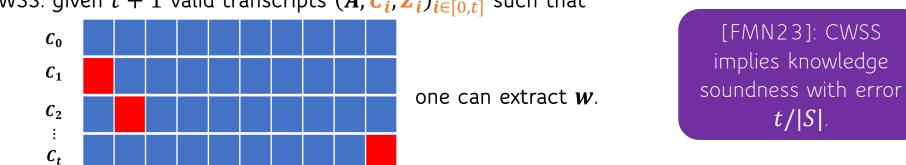
Special soundness: given two valid transcripts (A, C, Z) and (A, C', Z') with different $C \neq C'$, one can extract w.



Coordinate-wise special soundness



Special soundness: given two valid transcripts (A, C, Z) and (A, C', Z') with different $C \neq C'$, one can extract w.

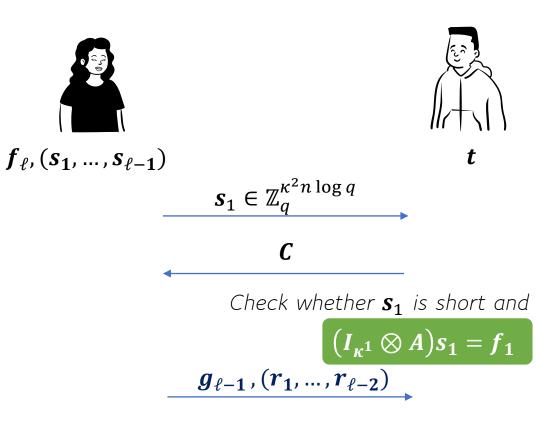


t/|S|.

CWSS: given t + 1 valid transcripts $(A, C_i, Z_i)_{i \in [0, t]}$ such that

Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening f_{ℓ} , $(s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)Gs_1 = (C \otimes I_n)f_1$



Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $f_{\ell}, (s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)Gs_1 = (C \otimes I_n)f_1$

- Take $\boldsymbol{\mathcal{C}} \leftarrow \{0,1\}^{\kappa \times \kappa^2}$.
- We prove that the three-round protocol satisfies CWSS where $\{0,1\}^{\kappa \times \kappa^2} := (\{0,1\}^{\kappa})^{\kappa^2}$.
- The soundness error becomes $\frac{\kappa^2}{2^{\kappa}}$.
- For our general protocol, the error is $\ell \cdot \frac{\kappa^2}{2^{\kappa}}$

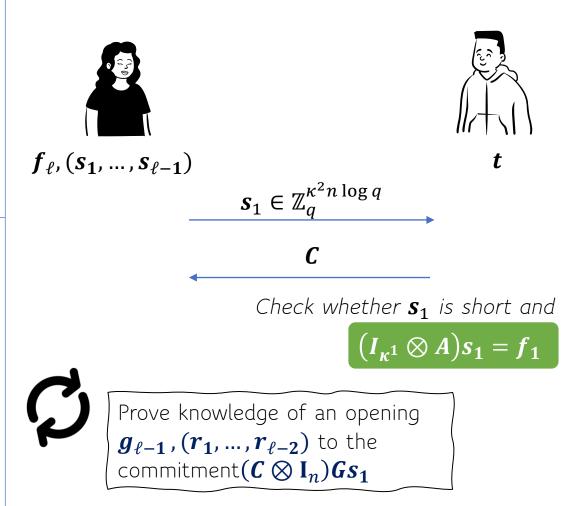
$$f_{\ell}, (s_1, \dots, s_{\ell-1})$$

$$f_{\ell}, (s_1, \dots, s_{\ell-1})$$

$$f_{\ell} \in \mathbb{Z}_q^{\kappa^2 n \log q}$$

Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening f_{ℓ} , $(s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)Gs_1 = (C \otimes I_n)f_1$

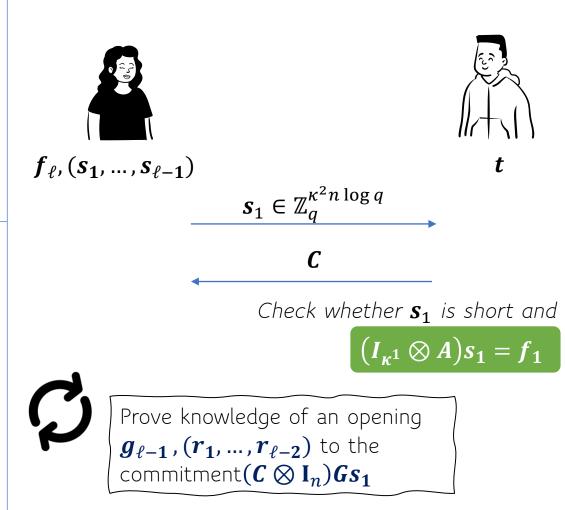


Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $f_{\ell}, (s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(\mathcal{C} \otimes \mathbf{I}_n) \mathbf{Gs}_1 = (\mathcal{C} \otimes \mathbf{I}_n) \mathbf{f}_1$

Communication complexity:

- $O(\kappa^2 n \log q)$ elements over \mathbb{Z}_q per round
- there are $0(\ell)$ rounds
- total proof size is $O(\ell \kappa^2 n \log q) \mathbb{Z}_q$ -elements



Folding property: given any matrix $C \in \mathbb{Z}_q^{\kappa \times \kappa^2}$ and a valid opening $f_{\ell}, (s_1, \dots, s_{\ell-1})$ for a commitment t

valid opening $g_{\ell-1}$, $(r_1, ..., r_{\ell-2})$ for the commitment $(C \otimes I_n)Gs_1 = (C \otimes I_n)f_1$

Communication complexity:

- $O(\kappa^2 n \log q)$ elements over \mathbb{Z}_q per round
- there are $\mathrm{O}(\ell)$ rounds
- total proof size is $O(\ell \kappa^2 n \log q) \mathbb{Z}_q$ -elements

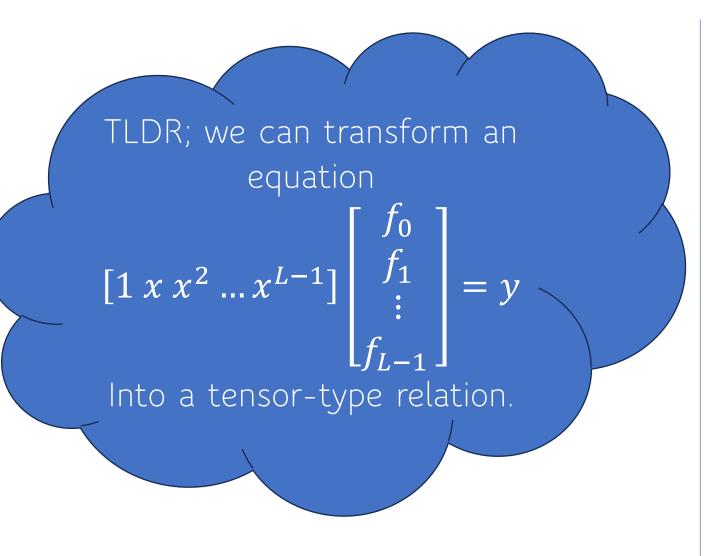
Recall that $L = \kappa^{\ell} \cdot n$. Take $n, \kappa \in O(\lambda)$. Then $\ell = O\left(\frac{\log L}{\log \lambda}\right) = O(1)$... Polylogarithmic proof size!

$$f_{\ell}, (s_1, \dots, s_{\ell-1})$$

$$f_{\ell}, (s_1, \dots, s_{\ell-1})$$

$$f_{\ell} \in \mathbb{Z}_q^{\kappa^2 n \log q}$$

Polynomial evaluation proof for free



Prove knowledge of an opening to a commitment $t = f_1$: message f_ℓ and short $s_1, \dots, s_{\ell-1}$ s.t.

 $Gs_{\ell-1} = f_{\ell}$

 $f_{\ell-1} \coloneqq Gs_{\ell-2} \\ (I_{\kappa^{\ell-1}} \otimes A)s_{\ell-1} = f_{\ell-1}$

 $f_2 \coloneqq Gs_1$ $(I_{\kappa^2} \otimes A)s_2 = f_2$

 $(I_{\kappa^1}\otimes A)s_1=f_1$

Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

Concrete efficiency

We build a concretely efficient variant over polynomial rings (rather than over \mathbb{Z}_q).

- Asymptotically the proof size is $\mathcal{O}(L^{1/3})$ ring elements.

Scheme	Proof size for $L = 2^{20}$
[FMN23](L)	3.4MB
SLAP [AFLN24] (L)	36.5MB
Brakedown (H)	9.7MB
Ligero (H)	1004KB
FRI (H)	388KB
This work	501KB

Outline

- 1. Notion of a polynomial commitment scheme
- 2. Prior constructions from lattices
- 3. Our contributions
- 4. Performance
- 5. Quiz!!!

Summary

- Efficient polynomial commitments from lattices
 - Succinct proof sizes and verification
 - Under standard assumptions (+ROM)

➤ Transparent setup

- Tight security proof in ROM via CWSS
- ➢ Quantum security

Future work:

- Space efficiency streaming polynomial commitments?
- Concrete efficiency for the integer construction?
- Tighter quantum reduction?

https://eprint.iacr.org/2024/281

Thank you!

This work is supported by the **RFP-013 Cryptonet network grant** by Protocol Labs.

