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Introduction to side-channel attack on a toy block-cipher 

𝑘

Sbox …𝑥𝑝

Let's take an toy block-cipher:
• 8-bit plaintext 𝑝.
• 8-bit key 𝑘.
• 8-bit Sbox output 𝑥.

Prob. Distribution of variables

In a black-box setting:
• 𝑘 is uniform as sampled uniformly. 
• 𝑥 is uniform because of XOR with secret key.
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𝑘

Sbox …
Embedded device

𝑥𝑝

Prob. Distribution of variablesIn embedded systems:
1. Adversary sends a plaintext 𝑝.
2. 𝑥 generates some leakages such as power or EM.
3. The adversary records these leakages.
4. Adversary samples the posterior distribution of 𝑥.
5. Adversary derives the posterior distribution of 𝑘.

Introduction to side-channel attack on a toy block-cipher 
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Introduction to standard template attack DPA. 

𝑘

Sbox …
Embedded device

𝑥𝑝

Prob. Distribution of variables

In embedded systems:
1. Adversary sends a plaintext 𝑝.
2. 𝑥 generates some leakages such as power or EM.
3. The adversary records these leakages.
4. Adversary samples the posterior distribution of 𝑥.
5. Adversary derives the posterior distribution of 𝑘.
6. Repeat the process to obtain the correct 𝑘.

Correct 𝑘 = 42
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Side-channel 
attacks
Kyber
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Kyber Overview: Fujisaki Okamoto transform

CPA
Decryption

CPA
Encryption
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Kyber Overview: the SCA Problem OF the FO-Transform 

Attack 1: Chosen Plaintext

• Attacker inputs only valid ciphertexts

• Attack focuses on CPA Decryption, everything after (and including)          is public

• Only need to protect CPA Decryption

CPA
Decryption

CPA
Encryption

=
=C P C

?

SK PK

P

Known 

by attacker

Valid

Ciphertext

PublicSensitive
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Kyber Overview: the SCA Problem OF the FO-Transform 

Attack 2: Chosen Ciphertext

• Attacker inputs specially-crafted invalid ciphertexts

• Attack focuses on CPA Decryption + everything after (and including)          is potentially sensitive

• Potentially all (or most) modules need to be hardened

CPA
Decryption

CPA
Encryption

=
=C P C

?

SK PK

P

Leaks

about   …….

Invalid

Ciphertext

SensitiveSensitive

SK

Guo, Johansson, Nilsson

CRYPTO ‘20
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Kyber-Overview: the SCA Problem OF the FO-Transform 

Attack 2: Chosen Ciphertext (example)

1. Attacker inputs specially-crafted invalid ciphertexts        such that:

• = b|000000 if 𝑠𝑖 ∈ {0,1,2}, with 𝑏 = 1

• = b|000000 if 𝑠𝑖 ∈ −2,−1 , with 𝑏 = 0

2. Attack gets the leakage from the all CPA-Encryption(       ) to recover 𝑏.

3. After recovering 𝑏, the attacker knows some about the coefficient 𝑠𝑖 .

4. Repeat the same process for different subset for 𝑠𝑖 and recover exact 𝑠𝑖 value.

5. Repeat for each of the coefficients.

Improvement tracks in the literature:

• Recover information for more coefficients at once:  𝑏 is a multiple bit target.

• Resilient to miss classification of 𝑏.

• Reduce the number of 𝑏 to be recovered per coefficient.

• Combine with sieving not to have to recover all the coefficients.

P

C

P

P
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Challenge of protecting Kyber against SCA

Block-cipher vs. KEMs:

• Block-cipher: 

• Only a small portion of the intermediates can efficiently be exploited:

• Due to the size of the key guesses to perform and diffusion.

• KEMs:

• A single bit must be distinguished hence the size of the key-guess don’t increase.

• Every single block can be exploited equally.

Operations attacked in the literature:

• Message 𝑝 encoding/decoding.

• Arithmetic operations (NTT, base-multiplication, …).

• Seed expansion with Keccak.

• Ciphertext comparison.
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Side-channel 
attacks
Dilithium
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Dilithium Overview: Fiat-Shamir with Abort

𝑦

𝜌′

𝑀

𝐴

𝑷𝒂𝒓𝒔𝒊𝒏𝒈

𝜅

𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝑠1

+

𝑐

𝑺𝑯𝑨𝑲𝑬

𝑤 𝑫𝒆𝒄𝒐𝒎𝒑𝒐𝒔𝒆

𝑤1

+

𝑤0

𝑠2

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌 𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑧

ǁ𝑟

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

ℎ

1. Generate a signature 𝑧 for 
a message 𝑀. 

2. Check if 𝑧 is small enough.
3. If not, start over.
4. Otherwise release the 

signature.
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Dilithium: Attack vector 𝐱 = 𝐬⊙ 𝒄

𝑦

𝑠

+

𝑐

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

Observations: 
• The signature is 𝑧 = 𝑦 + 𝑠 ⊙ 𝑐 where we call 𝑥 = 𝑠 ⊙ 𝑐.
• Both 𝑠 and 𝑐 have a small norm hence 𝑥 is small. 
• The result polynomial 𝑥 can be expressed as (first coeff.):

𝑥𝑜 = 𝑐0𝑠0 − ∑𝑐𝑖𝑠𝑛−𝑖
where no modular reduction occurs.
• Mean of distribution of 𝑥0 depends on 𝑐0𝑠0.

𝑥0 ← 𝑁(𝑐0𝑠0, 𝜎
2)

Side-channel adversary:
• Filter the signatures to keep only 𝑐0 = 1.
• Sample Pr 𝑥0 𝑙, 𝑐0 = 1 through SCA.
• Compute the mean of that distribution.
• Recover the secret key coefficient 𝑠0.

𝑥

𝑧

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.
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Dilithium: Attack vector y

Observations: 
• The signature is 𝑧 = 𝑦 + 𝑠 ⊙ 𝑐 where we call 𝑥 = 𝑠 ⊙ 𝑐.
• The released signature 𝑧 is given to the adversary. 
• 𝑦 must be uniform to perfectly hide 𝑥 = 𝑠 ⊙ 𝑐.

Side-channel adversary:
• Collect signatures (𝑧, c)
• Record the corresponding leakages on 𝑦.
• Estimate the posterior distribution of Pr 𝑦 𝑙].
• 𝑧 does not hide perfectly 𝑥 anymore, recover the key.

𝑦

𝑠

+

𝑐

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑥

𝑧

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.
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Generic framework

Side-Channel Attacks (SCA)

Noisy leakage on 
intermediate variables

Generic Secret-Key 
extraction framework 

based on Belief 
Propagation

Improved guess on secret key

Repeat to improve key guess

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.
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Generic framework – Methodology

𝑐0
0 ⋯ 𝑐𝑛−1

0

⋮ ⋱ ⋮
𝑐0
𝑁−1 ⋯ 𝑐𝑛−1

𝑁−1
⋅

𝑠0
⋮

𝑠𝑛−1
=

𝑥0
0

⋮
𝑥0
𝑁−1

Methodology:
1. Collect 𝑁 signature (𝑐𝑖 , 𝑧𝑖) and leakage on 𝑥0𝑖 and/or 𝑦0𝑖 .
2. Estimate distribution Pr 𝑥0𝑖 𝑙𝑖 .
3. Build the linear system of equations.
4. Solve the system to recover distribution on 𝑠𝑗 . 

Used Solver:
• Belief propagation based:

• Iterative message passing algorithm
• Well studied in SCA context but heuristic.

Public polynomial
(integers)

Public polynomial
(integers)

Secret polynomial
(distributions)

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.
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Generic Framework – Key Recovery Efficiency

SCA on accepted signatures SCA on rejected signatures (w early abort)

Signal-to-Noise
Ratio

Signal-to-Noise
Ratio

Observation from simulated experiments:
• When noise is low, <10 signatures are needed to recover the full key. 
• Increasing the noise makes the number of traces needed increasing linearly.
• Rejected signature (with and without early-abort) are also exploitable but require much 

more traces. 

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.
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Exploiting rejected signatures

dilithium/ref/poly.c at master · pq-
crystals/dilithium · GitHub

From the reference implementation of Dilithium:

• The rejection probability is independent of the secret if…
• The sign of 𝑦 is NOT leaked.

With SCA:
• Biased posterior distribution of 𝑦 thanks to SCA.
• The rejection probability is dependent of the secret.
• Early rejection strategy leaks the exact rejected coefficient.
• Even without early rejection, the attack can be mounted (but less efficient).

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

https://github.com/pq-crystals/dilithium/blob/master/ref/poly.c#L277
https://github.com/pq-crystals/dilithium/blob/master/ref/poly.c#L277
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Sensitivity analysis of Dilithium Sign

𝑦
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+

𝑐

𝑺𝑯𝑨𝑲𝑬

𝑤 𝑫𝒆𝒄𝒐𝒎𝒑𝒐𝒔𝒆

𝑤1

+

𝑤0

𝑠2

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌 𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑧

ǁ𝑟

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

ℎ

Green = Public variables that 
require less protection

Red = Sensitive variables that 
require strong protection
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Fault Attack 
Dilithium
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Fault Attack (FA)

Bias on sensitive 
intermediate variables

Generic Secret-Key 
extraction framework 

based on Belief 
Propagation

Improved guess on secret key

Repeat to improve key guess

Generic Framework – Bias with fault attack
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From MLWE to RLWE with fault attack (overview)

𝐴[0,0] ⋯ 𝐴[0, ℓ − 1]
⋮ ⋱ ⋮

𝐴[𝑘 − 1,0] ⋯ 𝐴[𝑘 − 1, ℓ − 1]
⋅

𝑠1[0]
⋮

𝑠1 ℓ − 1
+

𝑠2[0]
⋮

𝑠2 𝑘 − 1
=

𝑡 [0]
⋮

𝑡 𝑘 − 1

MLWE:

• Manipulated variables are polynomials.

• Security depends on the module (𝑘, ℓ)
and size of polynomials.

Known by adversary

Target of the adversary

Public matrix 𝐴 Public KeySecret Keys

Fault Injections:

• Force the target to manipulate corrupted data.

• Observe the resulting faulted signatures.

• Use them to reduce the hardness of the problem.

𝑎 ⋅ 𝑠1 0 + 𝑠2 0 = 𝑏

RLWE:

• Security depends on the size of 

polynomials.

Key Recovery:

• Dilithium polynomials size is chosen to be used in MLWE, 

not RLWE.

• The hardness of the instance is decreased.

• Lattice solving tools can practically recover the secret 

keys.
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𝑧 0 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 0 + 𝑐𝑠1[0]

𝑧 1 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 1 + 𝑐𝑠1[1]

𝑧 0 = 𝑦 0 + 𝑐𝑠1 0
𝑧 1 = 𝑦 1 + 𝑐𝑠1[1]

Correct Execution

Faulted Execution

𝑧 0 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 0 + 𝑐𝑠1[0]

𝑧 1 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 𝟎 + 𝑐𝑠1[1]

𝑧 0 = 𝑦 0 + 𝑐𝑠1 0
𝑧 1 = 𝑦 0 + 𝑐𝑠1[1]

From MLWE to RLWE with fault attack (1)
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Instruction skip

From MLWE to RLWE with fault attack (2)
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𝑧 0 = 𝑦 0 + 𝑐𝑠1 0
𝑧 1 = 𝑦 0 + 𝑐𝑠1[1]

𝑧 0 − 𝑧 1 = 𝑐(𝑠1 0 − 𝑠1[1])

Adv obtains signature (𝑧, 𝑐)

𝑧′ 1 = 𝑦′ 1 + 𝑐′𝑠1 1
𝑧′ 2 = 𝑦′ 1 + 𝑐′𝑠1[2]

𝑧′ 1 − 𝑧′ 2 = 𝑐′(𝑠1 1 − 𝑠1[2])

𝑧′′ 2 = 𝑦′′ 2 + 𝑐′′𝑠1 2
𝑧′′ 3 = 𝑦′′ 2 + 𝑐′′𝑠1[3]

𝑧′′ 2 − 𝑧′′ 3 = 𝑐′′(𝑠1 2 − 𝑠1[3])

Second Signature

First Signature

Third Signature

3 equations with 4 secret polynomials 

Express all 𝑠1[𝑖] as function of 𝑠1[0] and known data

From MLWE to RLWE with fault attack (3)
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Side-Channel 
countermeasures
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Masking: introduction

Intuitive view:
• Masking splits a secret 𝑥 into 𝑑 “shares” (𝑥0, … , 𝑥𝑑−1).
• Every subset of 𝑑-1 shares is independent of the secret 𝑥.
• If the adversary must recombine the 𝑑 shares to obtain the 𝑥. 
• Under noisy knowledge of 𝑥𝑖 , the information on 𝑥 decreases exponentially with the number of 

shares. 

Boolean masking:
• The recombination of shares is done with XOR

𝑥 = 𝑥0 ⊕𝑥1 ⊕⋯⊕𝑥𝑑−1
• Very efficient to protect:

• Boolean operations.
• Symmetric key cryptography.
• Keccak.

Arithmetic masking:
• The recombination of shares is done with 

modular additions
𝑥 = (𝑥0+𝑥1 +⋯+ 𝑥𝑑−1 )mod 𝑞

• Very efficient to protect:
• Modular operations.
• Polynomial operations.



|  NXP  |  Public35

Different type of operation and type of masking: Kyber

‘’Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs’, Bronchain & Cassiers, TCHES 2022.
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𝑦
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+
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𝑧

ǁ𝑟

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

ℎ

Boolean masking

Arithmetic masking

Unprotected

‘’Protecting Dilithium Against Leakage Revisited Sensitivity Analysis and Improved Implementations’’, Azouaoui et al., TCHES 2023.

Different type of operation and type of masking: Dilithium
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Speeding up software hardened PQC: bitslice and canonical representation

Bitslicing enables:
• Efficient protected FullAdd.
• Which enables efficient protected 

Add.
• Which enables efficient all other 

masking gadgets.

Secure Arithmetic to Boolean conversionSecure Addition

‘’Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs’, Bronchain & Cassiers, TCHES 2022.
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Improving the conversion gadgets (Kyber768 on a Cortex-M4)

Remarks on performance split-up:
• Improving the core masking gadget gave a large speed up on the over all scheme.
• Secure SHA3 is the bottleneck of the scheme.

‘’Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs’, Bronchain & Cassiers, TCHES 2022.
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Conclusions
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Hardening for SCA and FA

Side-channel countermeasures:
• SHA-3/SHAKE requires Boolean masking.
• Polynomial arithmetic requires Arithmetic masking.
• Both are well understood, but conversions between 

them are costly.

‘’Protecting Dilithium Against Leakage Revisited Sensitivity Analysis and Improved Implementations’’, Azouaoui et al., TCHES 2023.

Fault-attack countermeasures:
• Control-flow integrity.
• Re-computation of critical operations.

All these countermeasures have significant impact 
on run-time and memory consumption.
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Conclusions

• Migration to PQC is a difficult & hot topic, particularly in embedded environments
• Specific attacks:

• Large attack surface.
• Still very active area of research.

• Many other practical challenges
• Memory consumption on (very limited devices).
• Available hardware (co-processors).
• Efficient side-channel and fault countermeasures.
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