
| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

NewTPQC – Oxford –June 2024
Olivier Bronchain

Side-Channel Attacks on
Lattice-Based Cryptography:
Attacks and
Countermeasures

Our contribution to literature
NXP’s Authors:
• Melissa Azouaoui

• Joppe Bos

• Olivier Bronchain

• Christine Cloostermans

• Frank Custers

• Mohamed ElGhamrawy

• Marc Gourjon

• Joost Renes

• Tobias Schneider

• Markus Schönauer

• Amber Sprenkels

• Denise Verbakel

• …

NXP’s Publications:
• ’’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application

to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.
• ’’From MLWE to RLWE: A Differential Fault Attack on Randomized & Deterministic

Dilithium’’, ElGhamrawy et al., TCHES 2023
• ‘’Protecting Dilithium Against Leakage Revisited Sensitivity Analysis and Improved

Implementations’’, Azouaoui et al., TCHES 2023.
• ‘’Enabling FrodoKem for embedded devices’’, Bos et al., TCHES 2023
• “Post-Quantum Secure Over-the-Air Update of Automotive Systems”, Bos et al., Escar

2023.
• “Post-Quantum Authenticated Encryption against Chosen-Ciphertext Side-Channel

Attacks”, Azouaoui et al., TCHES 2022
• ‘’Post-Quantum Secure Boot on Vehicle Network Processors”, Bos et al., Escar 2022.
• “Dilithium for Memory Constrained Devices”, Bos et al, AfricaCrypt 2022.
• “Masking Kyber: First- and Higher-Order Implementations”, Bos et al., TCHES 2021
• …

Data collection, processing and decisions at the edge
Devices securely connected to the cloud

Data Centers
Millions

End Devices
Billions

Real-time
System

Security

Large
Processing

Power

Huge
memory &
power

Functional
Safety

Ultra
Low Power

CLOUD

No Silver Bullet
If a crypto scheme was better, we would have
standardized this already

Cryptographic Keys
Orders of magnitude larger.
Dilithium secret key up to 4.8KB
(ECC: 32 bytes, RSA: 384 bytes)

Performance
Varies: some faster, some significantly slower.
SHA-3 is a dominating component (~80%)

Memory
Orders of magnitude more.

Bandwidth & Power
Larger signatures (up to 4.6KB) → more
bandwidth required → increase in power
usage

IMPACT PQC ON OUR ECO-SYSTEM

INDUSTRIAL

Fit-for-purpose Scalable Processors

Comprehensive Software

Functional Safety & Security

Industrial Connectivity & Control

Machine Learning & Vision

Pqm4: Post-quantum crypto library for the ARM
Cortex-M4, STM32F4DISCOVERY
196 KiB of RAM and 1 MiB of Flash ROM

PQC O N E M BE D D ED D E V I CES

Low-power edge computing: NXP LPC800 Series

• 8 to 60 MHz Cortex-M0+ core
• { 4, 8, 16 } KiB of SRAM
• { 16, 32 } KiB Flash

The fastest implementations in pqm4 require
≈ 49, ≈ 80 and ≈ 116 KiB memory
for Dilithium-{2,3,5}.

Embedded implementation attacks

Side-Channel Attacks (SCA) Fault Attacks (FA)

Current Asymmetric
Cryptography

ECDSA
RSA ECC

Post-Quantum Cryptography

Dilithium
Kyber Falcon

SPHINCS+ XMSS

Deep understanding
in both academia
and industry from

decades of research.

Early stage of
academic research.

Limited industrial
results.

Attacks Countermeasures

Practically secure and
certified

implementations.

Active research area
resulting in

increasingly powerful
attacks.

Embedded cryptography and implementation attacks

| NXP | Public8 | NXP | Public8

01

Side-channel
attacks
Background

| NXP | Public9

Introduction to side-channel attack on a toy block-cipher

𝑘

Sbox …𝑥𝑝

Let's take an toy block-cipher:
• 8-bit plaintext 𝑝.
• 8-bit key 𝑘.
• 8-bit Sbox output 𝑥.

Prob. Distribution of variables

In a black-box setting:
• 𝑘 is uniform as sampled uniformly.
• 𝑥 is uniform because of XOR with secret key.

| NXP | Public10

𝑘

Sbox …
Embedded device

𝑥𝑝

Prob. Distribution of variablesIn embedded systems:
1. Adversary sends a plaintext 𝑝.
2. 𝑥 generates some leakages such as power or EM.
3. The adversary records these leakages.
4. Adversary samples the posterior distribution of 𝑥.
5. Adversary derives the posterior distribution of 𝑘.

Introduction to side-channel attack on a toy block-cipher

| NXP | Public11

Introduction to standard template attack DPA.

𝑘

Sbox …
Embedded device

𝑥𝑝

Prob. Distribution of variables

In embedded systems:
1. Adversary sends a plaintext 𝑝.
2. 𝑥 generates some leakages such as power or EM.
3. The adversary records these leakages.
4. Adversary samples the posterior distribution of 𝑥.
5. Adversary derives the posterior distribution of 𝑘.
6. Repeat the process to obtain the correct 𝑘.

Correct 𝑘 = 42

| NXP | Public12 | NXP | Public12

01

Side-channel
attacks
Kyber

| NXP | Public13

Kyber Overview: Fujisaki Okamoto transform

CPA
Decryption

CPA
Encryption

=
=C P C

?

SK PK

| NXP | Public14

Kyber Overview: the SCA Problem OF the FO-Transform

Attack 1: Chosen Plaintext

• Attacker inputs only valid ciphertexts

• Attack focuses on CPA Decryption, everything after (and including) is public

• Only need to protect CPA Decryption

CPA
Decryption

CPA
Encryption

=
=C P C

?

SK PK

P

Known

by attacker

Valid

Ciphertext

PublicSensitive

| NXP | Public15

Kyber Overview: the SCA Problem OF the FO-Transform

Attack 2: Chosen Ciphertext

• Attacker inputs specially-crafted invalid ciphertexts

• Attack focuses on CPA Decryption + everything after (and including) is potentially sensitive

• Potentially all (or most) modules need to be hardened

CPA
Decryption

CPA
Encryption

=
=C P C

?

SK PK

P

Leaks

about …….

Invalid

Ciphertext

SensitiveSensitive

SK

Guo, Johansson, Nilsson

CRYPTO ‘20

| NXP | Public16

Kyber-Overview: the SCA Problem OF the FO-Transform

Attack 2: Chosen Ciphertext (example)

1. Attacker inputs specially-crafted invalid ciphertexts such that:

• = b|000000 if 𝑠𝑖 ∈ {0,1,2}, with 𝑏 = 1

• = b|000000 if 𝑠𝑖 ∈ −2,−1 , with 𝑏 = 0

2. Attack gets the leakage from the all CPA-Encryption() to recover 𝑏.

3. After recovering 𝑏, the attacker knows some about the coefficient 𝑠𝑖 .

4. Repeat the same process for different subset for 𝑠𝑖 and recover exact 𝑠𝑖 value.

5. Repeat for each of the coefficients.

Improvement tracks in the literature:

• Recover information for more coefficients at once: 𝑏 is a multiple bit target.

• Resilient to miss classification of 𝑏.

• Reduce the number of 𝑏 to be recovered per coefficient.

• Combine with sieving not to have to recover all the coefficients.

P

C

P

P

| NXP | Public17

Challenge of protecting Kyber against SCA

Block-cipher vs. KEMs:

• Block-cipher:

• Only a small portion of the intermediates can efficiently be exploited:

• Due to the size of the key guesses to perform and diffusion.

• KEMs:

• A single bit must be distinguished hence the size of the key-guess don’t increase.

• Every single block can be exploited equally.

Operations attacked in the literature:

• Message 𝑝 encoding/decoding.

• Arithmetic operations (NTT, base-multiplication, …).

• Seed expansion with Keccak.

• Ciphertext comparison.

| NXP | Public18 | NXP | Public18

01

Side-channel
attacks
Dilithium

| NXP | Public19

Dilithium Overview: Fiat-Shamir with Abort

𝑦

𝜌′

𝑀

𝐴

𝑷𝒂𝒓𝒔𝒊𝒏𝒈

𝜅

𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝑠1

+

𝑐

𝑺𝑯𝑨𝑲𝑬

𝑤 𝑫𝒆𝒄𝒐𝒎𝒑𝒐𝒔𝒆

𝑤1

+

𝑤0

𝑠2

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌 𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑧

ǁ𝑟

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

ℎ

1. Generate a signature 𝑧 for
a message 𝑀.

2. Check if 𝑧 is small enough.
3. If not, start over.
4. Otherwise release the

signature.

| NXP | Public20

Dilithium: Attack vector 𝐱 = 𝐬⊙ 𝒄

𝑦

𝑠

+

𝑐

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

Observations:
• The signature is 𝑧 = 𝑦 + 𝑠 ⊙ 𝑐 where we call 𝑥 = 𝑠 ⊙ 𝑐.
• Both 𝑠 and 𝑐 have a small norm hence 𝑥 is small.
• The result polynomial 𝑥 can be expressed as (first coeff.):

𝑥𝑜 = 𝑐0𝑠0 − ∑𝑐𝑖𝑠𝑛−𝑖
where no modular reduction occurs.
• Mean of distribution of 𝑥0 depends on 𝑐0𝑠0.

𝑥0 ← 𝑁(𝑐0𝑠0, 𝜎
2)

Side-channel adversary:
• Filter the signatures to keep only 𝑐0 = 1.
• Sample Pr 𝑥0 𝑙, 𝑐0 = 1 through SCA.
• Compute the mean of that distribution.
• Recover the secret key coefficient 𝑠0.

𝑥

𝑧

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

| NXP | Public21

Dilithium: Attack vector y

Observations:
• The signature is 𝑧 = 𝑦 + 𝑠 ⊙ 𝑐 where we call 𝑥 = 𝑠 ⊙ 𝑐.
• The released signature 𝑧 is given to the adversary.
• 𝑦 must be uniform to perfectly hide 𝑥 = 𝑠 ⊙ 𝑐.

Side-channel adversary:
• Collect signatures (𝑧, c)
• Record the corresponding leakages on 𝑦.
• Estimate the posterior distribution of Pr 𝑦 𝑙].
• 𝑧 does not hide perfectly 𝑥 anymore, recover the key.

𝑦

𝑠

+

𝑐

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑥

𝑧

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

| NXP | Public22

Generic framework

Side-Channel Attacks (SCA)

Noisy leakage on
intermediate variables

Generic Secret-Key
extraction framework

based on Belief
Propagation

Improved guess on secret key

Repeat to improve key guess

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

| NXP | Public23

Generic framework – Methodology

𝑐0
0 ⋯ 𝑐𝑛−1

0

⋮ ⋱ ⋮
𝑐0
𝑁−1 ⋯ 𝑐𝑛−1

𝑁−1
⋅

𝑠0
⋮

𝑠𝑛−1
=

𝑥0
0

⋮
𝑥0
𝑁−1

Methodology:
1. Collect 𝑁 signature (𝑐𝑖 , 𝑧𝑖) and leakage on 𝑥0𝑖 and/or 𝑦0𝑖 .
2. Estimate distribution Pr 𝑥0𝑖 𝑙𝑖 .
3. Build the linear system of equations.
4. Solve the system to recover distribution on 𝑠𝑗 .

Used Solver:
• Belief propagation based:

• Iterative message passing algorithm
• Well studied in SCA context but heuristic.

Public polynomial
(integers)

Public polynomial
(integers)

Secret polynomial
(distributions)

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

| NXP | Public24

Generic Framework – Key Recovery Efficiency

SCA on accepted signatures SCA on rejected signatures (w early abort)

Signal-to-Noise
Ratio

Signal-to-Noise
Ratio

Observation from simulated experiments:
• When noise is low, <10 signatures are needed to recover the full key.
• Increasing the noise makes the number of traces needed increasing linearly.
• Rejected signature (with and without early-abort) are also exploitable but require much

more traces.

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

| NXP | Public25

Exploiting rejected signatures

dilithium/ref/poly.c at master · pq-
crystals/dilithium · GitHub

From the reference implementation of Dilithium:

• The rejection probability is independent of the secret if…
• The sign of 𝑦 is NOT leaked.

With SCA:
• Biased posterior distribution of 𝑦 thanks to SCA.
• The rejection probability is dependent of the secret.
• Early rejection strategy leaks the exact rejected coefficient.
• Even without early rejection, the attack can be mounted (but less efficient).

‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

https://github.com/pq-crystals/dilithium/blob/master/ref/poly.c#L277
https://github.com/pq-crystals/dilithium/blob/master/ref/poly.c#L277

| NXP | Public26

Sensitivity analysis of Dilithium Sign

𝑦

𝜌′

𝑀

𝐴

𝑷𝒂𝒓𝒔𝒊𝒏𝒈

𝜅

𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝑠1

+

𝑐

𝑺𝑯𝑨𝑲𝑬

𝑤 𝑫𝒆𝒄𝒐𝒎𝒑𝒐𝒔𝒆

𝑤1

+

𝑤0

𝑠2

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌 𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑧

ǁ𝑟

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

ℎ

Green = Public variables that
require less protection

Red = Sensitive variables that
require strong protection

| NXP | Public27 | NXP | Public27

Fault Attack
Dilithium

| NXP | Public28 ‘’Exploiting Small-Norm Polynomial Multiplication with Physical Attacks: Application to CRYSTALS-Dilithium’’, Bronchain et al, TCHES 2024.

Fault Attack (FA)

Bias on sensitive
intermediate variables

Generic Secret-Key
extraction framework

based on Belief
Propagation

Improved guess on secret key

Repeat to improve key guess

Generic Framework – Bias with fault attack

| NXP | Public29

From MLWE to RLWE with fault attack (overview)

𝐴[0,0] ⋯ 𝐴[0, ℓ − 1]
⋮ ⋱ ⋮

𝐴[𝑘 − 1,0] ⋯ 𝐴[𝑘 − 1, ℓ − 1]
⋅

𝑠1[0]
⋮

𝑠1 ℓ − 1
+

𝑠2[0]
⋮

𝑠2 𝑘 − 1
=

𝑡 [0]
⋮

𝑡 𝑘 − 1

MLWE:

• Manipulated variables are polynomials.

• Security depends on the module (𝑘, ℓ)
and size of polynomials.

Known by adversary

Target of the adversary

Public matrix 𝐴 Public KeySecret Keys

Fault Injections:

• Force the target to manipulate corrupted data.

• Observe the resulting faulted signatures.

• Use them to reduce the hardness of the problem.

𝑎 ⋅ 𝑠1 0 + 𝑠2 0 = 𝑏

RLWE:

• Security depends on the size of

polynomials.

Key Recovery:

• Dilithium polynomials size is chosen to be used in MLWE,

not RLWE.

• The hardness of the instance is decreased.

• Lattice solving tools can practically recover the secret

keys.

| NXP | Public30

𝑧 0 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 0 + 𝑐𝑠1[0]

𝑧 1 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 1 + 𝑐𝑠1[1]

𝑧 0 = 𝑦 0 + 𝑐𝑠1 0
𝑧 1 = 𝑦 1 + 𝑐𝑠1[1]

Correct Execution

Faulted Execution

𝑧 0 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 0 + 𝑐𝑠1[0]

𝑧 1 = ExpandMask 𝑠𝑒𝑒𝑑, ℓ. 𝜅 + 𝟎 + 𝑐𝑠1[1]

𝑧 0 = 𝑦 0 + 𝑐𝑠1 0
𝑧 1 = 𝑦 0 + 𝑐𝑠1[1]

From MLWE to RLWE with fault attack (1)

| NXP | Public31

Instruction skip

From MLWE to RLWE with fault attack (2)

| NXP | Public32

𝑧 0 = 𝑦 0 + 𝑐𝑠1 0
𝑧 1 = 𝑦 0 + 𝑐𝑠1[1]

𝑧 0 − 𝑧 1 = 𝑐(𝑠1 0 − 𝑠1[1])

Adv obtains signature (𝑧, 𝑐)

𝑧′ 1 = 𝑦′ 1 + 𝑐′𝑠1 1
𝑧′ 2 = 𝑦′ 1 + 𝑐′𝑠1[2]

𝑧′ 1 − 𝑧′ 2 = 𝑐′(𝑠1 1 − 𝑠1[2])

𝑧′′ 2 = 𝑦′′ 2 + 𝑐′′𝑠1 2
𝑧′′ 3 = 𝑦′′ 2 + 𝑐′′𝑠1[3]

𝑧′′ 2 − 𝑧′′ 3 = 𝑐′′(𝑠1 2 − 𝑠1[3])

Second Signature

First Signature

Third Signature

3 equations with 4 secret polynomials

Express all 𝑠1[𝑖] as function of 𝑠1[0] and known data

From MLWE to RLWE with fault attack (3)

| NXP | Public33 | NXP | Public33

Side-Channel
countermeasures

| NXP | Public34

Masking: introduction

Intuitive view:
• Masking splits a secret 𝑥 into 𝑑 “shares” (𝑥0, … , 𝑥𝑑−1).
• Every subset of 𝑑-1 shares is independent of the secret 𝑥.
• If the adversary must recombine the 𝑑 shares to obtain the 𝑥.
• Under noisy knowledge of 𝑥𝑖 , the information on 𝑥 decreases exponentially with the number of

shares.

Boolean masking:
• The recombination of shares is done with XOR

𝑥 = 𝑥0 ⊕𝑥1 ⊕⋯⊕𝑥𝑑−1
• Very efficient to protect:

• Boolean operations.
• Symmetric key cryptography.
• Keccak.

Arithmetic masking:
• The recombination of shares is done with

modular additions
𝑥 = (𝑥0+𝑥1 +⋯+ 𝑥𝑑−1)mod 𝑞

• Very efficient to protect:
• Modular operations.
• Polynomial operations.

| NXP | Public35

Different type of operation and type of masking: Kyber

‘’Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs’, Bronchain & Cassiers, TCHES 2022.

| NXP | Public36

𝑦

𝜌′

𝑀

𝐴

𝑷𝒂𝒓𝒔𝒊𝒏𝒈

𝜅

𝑪𝒉𝒂𝒍𝒍𝒆𝒏𝒈𝒆𝑠1

+

𝑐

𝑺𝑯𝑨𝑲𝑬

𝑤 𝑫𝒆𝒄𝒐𝒎𝒑𝒐𝒔𝒆

𝑤1

+

𝑤0

𝑠2

𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌 𝑩𝒐𝒖𝒏𝒅𝑪𝒉𝒆𝒄𝒌

𝑧

ǁ𝑟

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

ℎ

Boolean masking

Arithmetic masking

Unprotected

‘’Protecting Dilithium Against Leakage Revisited Sensitivity Analysis and Improved Implementations’’, Azouaoui et al., TCHES 2023.

Different type of operation and type of masking: Dilithium

| NXP | Public37

Speeding up software hardened PQC: bitslice and canonical representation

Bitslicing enables:
• Efficient protected FullAdd.
• Which enables efficient protected

Add.
• Which enables efficient all other

masking gadgets.

Secure Arithmetic to Boolean conversionSecure Addition

‘’Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs’, Bronchain & Cassiers, TCHES 2022.

| NXP | Public38

Improving the conversion gadgets (Kyber768 on a Cortex-M4)

Remarks on performance split-up:
• Improving the core masking gadget gave a large speed up on the over all scheme.
• Secure SHA3 is the bottleneck of the scheme.

‘’Bitslicing Arithmetic/Boolean Masking Conversions for Fun and Profit with Application to Lattice-Based KEMs’, Bronchain & Cassiers, TCHES 2022.

| NXP | Public39

Conclusions

| NXP | Public40

Hardening for SCA and FA

Side-channel countermeasures:
• SHA-3/SHAKE requires Boolean masking.
• Polynomial arithmetic requires Arithmetic masking.
• Both are well understood, but conversions between

them are costly.

‘’Protecting Dilithium Against Leakage Revisited Sensitivity Analysis and Improved Implementations’’, Azouaoui et al., TCHES 2023.

Fault-attack countermeasures:
• Control-flow integrity.
• Re-computation of critical operations.

All these countermeasures have significant impact
on run-time and memory consumption.

| NXP | Public41

Conclusions

• Migration to PQC is a difficult & hot topic, particularly in embedded environments
• Specific attacks:

• Large attack surface.
• Still very active area of research.

• Many other practical challenges
• Memory consumption on (very limited devices).
• Available hardware (co-processors).
• Efficient side-channel and fault countermeasures.

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

Get in touch

Olivier, Bronchain
olivier.bronchain@nxp.com

https://www.nxp.com/

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

https://www.nxp.com/

	Light mode | title slide
	Slide 1: Side-Channel Attacks on Lattice-Based Cryptography: Attacks and Countermeasures
	Slide 2: Our contribution to literature
	Slide 4
	Slide 5
	Slide 6: Embedded implementation attacks
	Slide 7: Embedded cryptography and implementation attacks

	Light mode | section dividers
	Slide 8: Side-channel attacks
	Slide 9: Introduction to side-channel attack on a toy block-cipher
	Slide 10: Introduction to side-channel attack on a toy block-cipher
	Slide 11: Introduction to standard template attack DPA.
	Slide 12: Side-channel attacks
	Slide 13: Kyber Overview: Fujisaki Okamoto transform
	Slide 14: Kyber Overview: the SCA Problem OF the FO-Transform
	Slide 15: Kyber Overview: the SCA Problem OF the FO-Transform
	Slide 16: Kyber-Overview: the SCA Problem OF the FO-Transform
	Slide 17: Challenge of protecting Kyber against SCA
	Slide 18: Side-channel attacks
	Slide 19: Dilithium Overview: Fiat-Shamir with Abort
	Slide 20: Dilithium: Attack vector bold x equals , bold s circled dot bold italic c
	Slide 21: Dilithium: Attack vector y
	Slide 22: Generic framework
	Slide 23: Generic framework – Methodology
	Slide 24: Generic Framework – Key Recovery Efficiency
	Slide 25: Exploiting rejected signatures
	Slide 26: Sensitivity analysis of Dilithium Sign
	Slide 27: Fault Attack
	Slide 28: Generic Framework – Bias with fault attack
	Slide 29: From MLWE to RLWE with fault attack (overview)
	Slide 30: From MLWE to RLWE with fault attack (1)
	Slide 31: From MLWE to RLWE with fault attack (2)
	Slide 32: From MLWE to RLWE with fault attack (3)
	Slide 33: Side-Channel countermeasures
	Slide 34: Masking: introduction
	Slide 35: Different type of operation and type of masking: Kyber
	Slide 36: Different type of operation and type of masking: Dilithium
	Slide 37: Speeding up software hardened PQC: bitslice and canonical representation
	Slide 38: Improving the conversion gadgets (Kyber768 on a Cortex-M4)
	Slide 39
	Slide 40: Hardening for SCA and FA
	Slide 41: Conclusions

	Light mode | closing slides
	Slide 42: Get in touch
	Slide 43

