
Private Information Retrieval
and lattices:

Advancements and Future
newtpqc
Sofía Celi

cherenkov@riseup.net

Private Information Retrieval (PIR)

A Private Information Retrieval (PIR) scheme provides the ability for clients to
retrieve items from an online public (*) database of m elements, without
revealing anything about their queries to the untrusted host server(s)

● Parties:
a. Client(s)
b. Server (one or multiple)

● Steps:
○ Query
○ Response
○ Parse

2

3

Private Information Retrieval (PIR)

Two types (sort of):

1. Information-theoretic PIR: client interacting with multiple non-colluding
servers

2. Computational-theoretic PIR: client interacting with a single server,
provides computational security based on cryptographic assumptions:
a. Stateless PIR:

■ The client does not store any (pre)information in order to launch queries
■ The schemes (a bunch!) perform worse than downloading the whole DB or they

require computational overheads

4

Private Information Retrieval (PIR)

Two types (sort of):

1. Information-theoretic PIR: client interacting with multiple non-colluding
servers

2. Computational-theoretic PIR: client interacting with a single server,
provides computational security based on cryptographic assumptions:
a. Stateless PIR
b. Stateful PIR: provides a “state” (or hint/digest) used as a “preprocessing” step amortised

over n client queries

5

Private Information Retrieval (PIR)

Two types (sort of):

1. Information-theoretic PIR: client interacting with multiple non-colluding
servers

2. Computational-theoretic PIR: client interacting with a single server,
provides computational security based on cryptographic assumptions:
a. Stateless PIR
b. Stateful PIR

Idea: encrypt the query instead of secret-sharing it

6

Private Information Retrieval (PIR)

Limitations in Computational-theoretic PIR:

● Expensive pre-processing in terms of computation or communication
● High online-phase bandwidth consumption
● Lack of practical security parameters
● Lack of simple, open-source, available, verified implementations

7

Current look

❏ Very active research area

❏ Promising efficiency (computational/communicational/financial)

❏ Variety of applications

8

Which applications?

Some deployments / related technologies exist:

❏ Brave (compromised credential-checking, TBD)
❏ Blyss (https://github.com/blyssprivacy/sdk)
❏ Google (Device Enrollment)
❏ Microsoft (Password Monitor)

More complex use-cases (not deployed):

❏ Approximate nearest-neighbor: Brave News
❏ Private search: TipToe
❏ Oblivious document ranking: Coeus

9

https://brave.com/research/frodo-pir-simple-scalable-single-server-private-information-retrieval/
https://github.com/blyssprivacy/sdk
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://brave.com/brave-news/
https://eprint.iacr.org/2023/1438
https://eprint.iacr.org/2022/154

FrodoPIR
(but also SimplePIR)

https://eprint.iacr.org/2022/981
https://eprint.iacr.org/2022/949

10

https://eprint.iacr.org/2022/981
https://eprint.iacr.org/2022/949

11

Core ideas

● Built directly upon the learning with errors (LWE) problem only (similar to
FrodoKEM)

○ Security relies on decisional LWE
○ Security is conservative (128 bits for 2^52 client queries): some parameters can be

modified in order to make the scheme more efficient

● Highly configurable
○ Differences with SimplePIR: different pre-processing encoding, and

the addition of a query pre-processing stage
● Tailored for efficiency and real-world applications

12

13

14

Notation

● DB is an array of m elements, each made up of w bits.
● Each entry is associated with the index i that corresponds to its position in

the array.
● There are C clients that will each launch a maximum of c queries against

DB.
● LWE:

a. n and q are the LWE dimension and modulus, respectively
b. ρ is the number of bits packed into each entry of the DB matrix (0 < ρ < q)
c. χ is the uniform ternary distribution over {-1, 0, 1}
d. λ is the concrete security parameter.

● PRG(μ, n, m, q) denotes a pseudorandom generator that expands a seed

15

FrodoPIR (offline: server)

● Server setup: The server constructs their database containing m
elements, and samples a seed

● Server pre-processing: The server:

- Derives a matrix

- Runs

- Runs

- Publishes the pair

The “hint” is

16

FrodoPIR (offline: client)

Pre-processing. Each client:

- Downloads
- Derives
- Samples c vectors:

-
- Computes:

- Stores the pairs as the set

Essentially, computes c sets of preprocessed query parameters (optional step).

17

FrodoPIR (online: client)

Query generation. For the index i that the client wishes to query, the client
generates a vector (the all-zero vector except where fi[i] = q/ρ):

It then pops a pair (b, c) from internal state and computes:

The client uses a single set of preprocessed query parameters to produce an
“encrypted” query vector, which is sent to the server

18

FrodoPIR (online: server)

Response. The server receives b’ from the client, and responds with:

Essentially, the server responds by multiplying the vector with their DB matrix

Post-processing. The client receives c’, and calculates:

Essentially, the client get the value by “decrypting” using their pre-processed query

parameters)
19

FrodoPIR Properties

Efficiency. PIR schemes require a communication overhead smaller than the
solution of having clients download the entire server database. In the stateful
PIR case, it should hold when amortizing costs over the number of client
queries.

20

FrodoPIR Properties

Efficiency.

21

FrodoPIR Properties

Efficiency.

22

Holds for large c: c > 18000 for m = 216

23

https://github.com/brave-experiments/frodo-pir

https://github.com/brave-experiments/frodo-pir

24

25

FrodoPIR Properties

Security: Indistinguishability of client queries. It assumes a semi-honest server
that follows the protocol correctly and attempts to learn more based on the
client queries they receive:

Server view: is distributed uniformly in

under the assumption that decional-LWE is difficult to solve

● Regev encryption remains secure even when the same matrix A is used to
encrypt many messages, provided that each ciphertext uses an
independent secret vector s and error vector e

Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer.

26

FrodoPIR Properties

Security: Indistinguishability of client queries.

We use the decisional Matrix LWE problem: extended form of the problem in
which the secrets and errors are also matrices to prove l-query
indistinguishability (with l = poly(λ))

● A standard hybrid argument shows that any adversary that can
distinguish the two distributions with advantage ε can be used to
construct an efficient adversary breaking the decision LWE problem with
advantage at least ε/l

J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and D. Stebila. Frodo: Take the
ring! Practical, quantum-secure key exchange from LWE.

27

28

к = (log(ρ) * m) / (n * log(q)) denote the improvement factor relative to the
offline client download, compared to the DB size.

128 bits of security for 252 queries: security can increase by increasing the
dimension but this will impact к

How we come up with it?

● Based on Regev’s encryption where the expansion factor is roughly 𝐹 = 𝑛 ≈
1024, where 𝑛 is the lattice security parameter

○ Do a lot of the work in advance and re-use
○ Additively homomorphic

● We use a ternary uniform distribution (bounded by 4√m, with m being the
number of samples taken from the distribution)

Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehle. Classical hardness of learning with errors.

29

What are the advantages?

1. It is simple: easy to explain, easy to push to production

2. LWE-based PIR schemes are simpler to implement: they require no
polynomial arithmetic or fast Fourier transforms

3. LWE-based PIR schemes do not require the server to store any extra
per-client state. In contrast, many schemes based on Ring LWE rely on
optimizations that require the server to store one “key-switching hint” for each
client

4. LWE-based PIR schemes are faster and cheaper: the encryption scheme
needs to be linearly (not fully) homomorphic, so we can use smaller and more
efficient lattice parameters

30

What is still limiting?

● The pre-processing stage is still dependent on the database size
○ Can be reduce, but it is still dependent from the size of element in the database

● Many steps are dependent on A
○ We make it independent for client with
○ But it is still costly during client parsing

31

But, is this enough?

● Databases are not structured in this simple way
○ They are indexed by keywords

○ They are structured as JSON, Graphs, Excel spreadsheets

● The queries we are interested in are not simple:
○ Complex queries with AND/OR statements

○ Combination of database systems

○ Approximate nearest neighbor (ANN) elements

● Databases are constantly updated

● Is the security we assume enough?
○ What about malicious security?

○ What about private databases?
32

Not all systems are
created equally

VERIPIR
Leo de Castro, Keewoo Lee

https://eprint.iacr.org/2024/341

33

https://eprint.iacr.org/2024/341

Authenticated/verifiable/malicious PIR:

● The DB “hint” (a commitment) is accompanied by a non-interactive
proof-of-knowledge of the DB, and then every answer from the
server is verified against this proof to ensure that it is consistent
with the commitment

Important security properties

34

Authenticated/verifiable/malicious PIR:

● The DB “hint” (a commitment) is accompanied by a non-interactive
proof-of-knowledge of the DB, and then every answer from the
server is verified against this proof to ensure that it is consistent
with the commitment
○ Use extractable SIS-based commitments

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-linear
lattice-based zeroknowledge arguments for arithmetic circuits.

Important security properties

35

● Extractable SIS-based commitments:
○ Without the “zero-knowledge”:

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-linear
lattice-based zeroknowledge arguments for arithmetic circuits.

SIS-based commitments

36

● Extractable SIS-based commitments:

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-linear
lattice-based zeroknowledge arguments for arithmetic circuits.

SIS-based commitments

37

● Gives a solid base but…
● Assumes a public, honest digest

○ Can we expand it to symmetric PIR?
○ Future work! (all with lattices and, hence, post-quantum)

Limitations and future

38

What else?

39

So, you want to research on this?

● Expand the security model:
○ How does leakage impact it?
○ Is it attackable?

● Introduce ‘updatable’ techniques
● Look at other applications of DB:

○ Do we fulfil them?
● How do we deal with variable-length elements?

○ Is padding enough?
● Can we make it simple with the ring?
● Can we look at state-of-the-art data structures/graphs/matrix theory?

Thank you Henry Corrigan-Gibbs, Alex Davidson, Alexandra Henzinger, Stefano Tessaro, Eli Richarson, Daniel
Escudero, Luiza Barros, Abdelraham Aly for input and discussing all of this!

Building steps

● Keyword-based PIR:
○ “Call Me By My Name: Simple, Practical Private Information Retrieval for Keyword

Queries”: https://eprint.iacr.org/2024/092
○ “Binary Fuse Filters: Fast and Smaller Than Xor Filters”: https://arxiv.org/abs/2201.01174

● Security:
○ “Fully Malicious Authenticated PIR”: https://eprint.iacr.org/2023/1804
○ “VeriSimplePIR: Verifiability in SimplePIR at No Online Cost for Honest Servers”:

https://eprint.iacr.org/2024/341
● Complex queries:

○ “Private Web Search with Tiptoe”: https://eprint.iacr.org/2023/1438
○ “Coeus: A System for Oblivious Document Ranking and Retrieval”:

https://eprint.iacr.org/2022/154
● Updatability:

○ “Incremental Offline/Online PIR”
https://www.cis.upenn.edu/~sga001/papers/incpir-sec22.pdf

https://eprint.iacr.org/2024/092
https://arxiv.org/abs/2201.01174
https://eprint.iacr.org/2023/1804
https://eprint.iacr.org/2024/341
https://eprint.iacr.org/2023/1438
https://eprint.iacr.org/2022/154
https://www.cis.upenn.edu/~sga001/papers/incpir-sec22.pdf

An announcement

PIR workshop at PETS: https://github.com/private-retrieval/wip

https://www.womenincryptography.com/ https://criptolatino.org/

https://github.com/private-retrieval/wip
https://www.womenincryptography.com/
https://criptolatino.org/

Thank you!
@claucece

www.sofiaceli.com

http://www.sofiaceli.com

CHALAMET-PIR
(one solution)

https://eprint.iacr.org/2024/092

44

https://eprint.iacr.org/2024/092

Core ideas

● Very simple (®) idea

45

Core ideas

1. Have a DB structured as a Key-Value (KV) map (size m, where each
element v is indexed by a key k)

2. Convert this map into a filter (F) structure (think on a Bloom Filter) with a
set of k hash functions and some false positive probability
a. The filter has a function that allows to recover v:
b. The filter is broken into d columns: interpret it as a matrix with çm (*) rows

3. Query for an element with a long vector where there are 1s on

46

(*) 1.08 ≤ ç ≤ 1.13, depending on the choice of k = {3, 4}

Basic construction

● Same ideas as previous in literature, but:
○ We leverage the usage of Binary Fuse Filters

■ Minimise the space and query overheads of key-value filters, while maintaining

quick access times

■ Reconstruct using XOR

■ Divide the filter into many more segments

○ We can use any LWE-based PIR scheme

https://lib.rs/crates/haveibeenpwned

https://sts10.github.io/2023/01/11/playing-with-binary-fuse-filters.html
47

https://lib.rs/crates/haveibeenpwned
https://sts10.github.io/2023/01/11/playing-with-binary-fuse-filters.html

48

49

Properties

● Security: Same as FrodoPIR (LWE-based), but:
○ We allow for false-positives, as we assume a public database. What impact does this

have?
○ We provide a random value in case of non-inclusion -> leakage impact

● Efficiency: Same as FrodoPIR (LWE-based), but:
○ Blow-up due to filter: ç

● Is it sufficient?
○ Assumes the same length of elements

50

